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The rate of heat and mass transfer at the surface of acoustically levitated pure liquid
droplets is predicted theoretically for the case where an acoustic boundary layer
appears near the droplet surface resulting in an acoustic streaming. The theory is based
on the computation of the acoustic field and squeezed droplet shape by means of the
boundary element method developed in Yarin, Pfaffenlehner & Tropea (1998). Given
the acoustic field around the levitated droplet, the acoustic streaming near the droplet
surface was calculated. This allowed calculation of the Sherwood and Nusselt number
distributions over the droplet surface, as well as their average values. Then, the mass
balance was used to calculate the evolution of the equivalent droplet radius in time.

The theory is applicable to droplets of arbitrary size relative to the sound wavelength
λ, including those of the order of λ, when the compressible character of the gas flow
is important. Also, the deformation of the droplets by the acoustic field is accounted
for, as well as a displacement of the droplet centre from the pressure node. The effect
of the internal circulation of liquid in the droplet sustained by the acoustic streaming
in the gas is estimated. The distribution of the time-average heat and mass transfer
rate over the droplet surface is found to have a maximum at the droplet equator and
minima at its poles. The time and surface average of the Sherwood number was shown
to be described by the expression Sh = KB/

√
ωD0, where B = A0e/(ρ0c0) is a scale of

the velocity in the sound wave (A0e is the amplitude of the incident sound wave, ρ0 is
the unperturbed air density, c0 is the sound velocity in air, ω is the angular frequency
in the ultrasonic range, D0 is the mass diffusion coefficient of liquid vapour in air,
which should be replaced by the thermal diffusivity of air in the computation of the
Nusselt number). The coefficient K depends on the governing parameters (the acoustic
field, the liquid properties), as well as on the current equivalent droplet radius a.

For small spherical droplets with a� λ, K = (45/4π)1/2 = 1.89, if A0e is found
from the sound pressure level (SPL) defined using A0e. On the other hand, if A0e

is found from the same value of the SPL, but defined using the root-mean-square
pressure amplitude (prms = A0e/

√
2), then Sh = KrmsBrms/

√
ωD0, with Brms =

√
2B

and Krms = K/
√

2 = 1.336. For large droplets squeezed significantly by the acoustic
field, K appears always to be greater than 1.89. The evolution of an evaporating
droplet in time is predicted and compared with the present experiments and existing
data from the literature. The agreement is found to be rather good.

We also study and discuss the effect of an additional blowing (a gas jet impinging
on a droplet) on the evaporation rate, as well as the enrichment of gas at the
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outer boundary of the acoustic bondary layer by liquid vapour. We show that,
even at relatively high rates of blowing, the droplet evaporation is still governed by
the acoustic streaming in the relatively strong acoustic fields we use. This makes
it impossible to study forced convective heat and mass transfer under the present
conditions using droplets levitated in strong acoustic fields.

1. Introduction
The acoustic levitation of droplets is a valuable tool for studying heat and mass

transfer at the droplet surface because it allows steady droplet positioning. However,
acoustic levitation results in an acoustic streaming near the droplet surface (see e.g.
the recent review by Riley 1997) which may affect the heat and mass transfer rate.

In spite of the fact that heat and mass transfer at the droplet surface in a stagnant
gas or a gas flow without an acoustic field has received significant attention for a long
time and many theoretical and experimental results are available (see, for example,
Maisel & Sherwood 1950; Ranz & Marshall 1952a, b; and Bird, Stewart & Lightfoot
1960), the acoustic-driven counterparts of these processes are much less understood.
Some experimental data on sublimation and evaporation of a levitated sample (or
a sample fixed in the acoustic field), as well as on heat transfer at its surface can
be found in Burdukov & Nakoryakov (1965a, b, 1967), Richardson (1967), Larsen
& Jensen (1978), Seaver, Galloway and Manuccia (1989), Seaver & Peele (1990),
Gopinath & Mills (1993) and Tian & Apfel (1996). These works deal with droplets
as well as with solid spheres and cylinders.

A key element of the heat and mass transfer processes at the surface of levitated
droplets is the acoustic streaming, first recognized by Rayleigh (1883) in regard of
Kundt’s dust patterns in a channel. Schlichting (1932, 1979) considered the problem
of an oscillating cylinder in a fluid or gas at rest, which is closely related to the
subject of the present work. He extended the method of successive approximations
dating back to Rayleigh (pp. 410 and 428–430 in Schlichting 1979), which allowed
him to calculate the acoustic streaming near an oscillating cylinder and to explain
the experimental findings of Andrade (1931). Another modification of the method of
successive approximations has been recently reviewed by Riley (1997) who denotes
the acoustic streaming of this type as Type (a), to distinguish it from the acoustic
streaming due to sound attenuation in the bulk, which he denotes as Type (b) or
‘quartz wind’. A different terminology is used in other sources, e.g. Krasilnikov &
Krylov (1984) refer to the acoustic streaming we are dealing with (Type a) as the
Schlichting-type acoustic streaming.

Burdukov & Nakoryakov (1965b) and Lee & Wang (1989, 1990) applied perturba-
tion methods related to those of Rayleigh and Schlichting to calculate the acoustic
streaming near an extremely small rigid sphere positioned in a standing plane sound
wave. Burdukov & Nakoryakov (1965b) also calculated the mass transfer rate at the
sphere surface and conducted an experiment to verify their theory. Their final result
includes an erroneous multiplier, which is discussed in § 7 below, due to which their
comparison with the experiment (which also does not correspond to the validity range
of their theory) seems to be inconclusive.

In the present work we are interested in the range where the Strouhal and Reynolds
numbers based on the field parameters are large (see (2.1) to (2.4) below), whereas
the Prandtl and Schmidt numbers are of the order one. Also the streaming Reynolds



Evaporation of acoustically levitated droplets 153

number (see (5.20) below) is of the order one. Under such conditions the acoustic
streaming dominates the mass transfer rate at the droplet surface (Burdukov & Nako-
ryakov 1965b; Richardson 1967; Larsen & Jensen 1978; Riley 1997 and references
therein).

The theory of Burdukov & Nakoryakov (1965b) is based on several main assump-
tions. One of them is very restrictive: their assumption that the levitated particle is
a sphere does not fit well the situation in the acoustic levitator where droplets are
squeezed by the acoustic pressure and acquire an oblate shape (here and hereinafter
we have in mind levitation of large liquid droplets in a gas host under the gravitational
field; see e.g. Yarin, Pfaffenlehner & Tropea 1998, referred to as YPT hereafter). The
assumption of Burdukov & Nakoryakov (1965b) that the droplet radius is much less
than the sound wavelength (and, as a result, the gas flow is effectively incompressible)
does not hold in many practically important situations. For example, it does not hold
in any case studied theoretically and experimentally in YPT.

The main goal of the present work is to remove these restrictive assumptions and to
predict the heat and mass transfer rates at the surface of oblate pure liquid droplets
levitated acoustically and displaced below the pressure node. Also the restriction
on the sound wavelength is removed allowing consideration of the compressible
acoustic streaming and its effect on the heat and mass transfer. We shall also study
experimentally and theoretically the effect of blowing on a droplet.

In § 2 some physical estimates are given which allow a reasonable simplification
of the problem. In § 3 the equations of the compressible acoustic boundary layer in
the gas near the droplet surface are posed. Their solution leading to the acoustic
streaming is obtained in § 4. In § 5 we show how the general result for the acoustic
streaming reduces to the incompressible case of the acoustic streaming near a small
sphere positioned at the pressure node. Heat and mass transfer at the surface of
the acoustically levitated droplet are treated in § 6, where the dependences of the
Sherwood and Nusselt numbers on the governing parameters are obtained (some
details of the calculations are given in Appendix A). The incompressible limit for the
Sherwood and Nusselt numbers in the case of a small spherical particle positioned at
the pressure node is obtained from the general result of § 6 in § 7. In § 8 we calculate
the vapour concentration at the droplet surface, as well as the droplet temperature.
We also calculate the vapour concentration at the outer boundary of the diffusion
boundary layer. In § 9 we rearrange the main results of the present work to the form
of equations (9.1) to (9.5) and (9.14). We implement them numerically, compare the
results with the results of the experiment also described in § 9 and present a discussion.
One of the outcomes is that blowing mainly affects the evaporation rate via variation
of the vapour concentration at the outer boundary of the acoustic boundary layer.
Even at relatively high rates of blowing, the evaporation under the present conditions
is still governed by the acoustic mechanism which makes it impossible to study forced
convective heat and mass transfer using droplets levitated acoustically in relatively
strong fields. Conclusions are given in § 10. Appendix B contains a calculation of the
internal circulation in a levitated droplet driven by the acoustic streaming in the gas
and estimates its effect on the evaporation rate.

2. Physical estimates and resulting simplifying assumptions
In the present section we introduce a number of assumptions, which will be relevant

for simplifications of the further theoretical development. These assumptions hold in
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the parameter range involved in the present work, which allows one to consider them
simply as relevant physical estimates.

(i) We assume that the incident standing plane acoustic wave does not change
due to the increase of concentration of an evaporating component. In the case of
heat removal from a heated particle this assumption is valid only if the temperature
differences are small and the free convection is excluded (say, in weightlessness).
Otherwise the levitation force may be significantly altered and the particle may even
jump out of the levitator (Leung & Wang 1985; Zevenbergen et al. 1998). Another
source of variation of the incident acoustic wave may be related to self-tuning of the
levitator due to a decrease of the droplet size and changes in the drop shape in the
course of evaporation. This results in an increase of the amplitude of the incident
acoustic wave (at a fixed frequency). This phenomenon is accounted for in the present
work (see § 9.3).

(ii) We also assume that droplets are practically impenetrable to the sound wave
since fluids of interest have much larger values of the acoustic impedance than that
of air (see e.g. Shi & Apfel 1995 and YPT).

(iii) Throughout the main body of the paper we neglect any flow inside a levitated
droplet, considering its fluid to be at rest. This assumption will be supported a
posteriori in Appendix B. There the internal circulation arising in the levitated droplet
due to liquid entrainment by the acoustic streaming in the gas will be calculated
in detail and compared with experimental data. The corresponding estimates also
presented in Appendix B will show that the effect of the circulation on the evaporation
rate is negligibly small in the parameter range involved. An estimate of a possible
Marangoni convection within the liquid in the case of heat removal from a warm
droplet is also given in Appendix B.

(iv) Kinematic viscosity, thermal diffusivity and diffusion coefficients of an evapor-
ating component are assumed to be independent of the mixture composition.

(v) The Reynolds number based on the sound frequency

Re =
ωa2

ν0

(2.1)

is assumed to be much larger than unity (Re� 1). Here ω is the angular frequency of
the incident sound wave (corresponding to the ultrasonic range), a is an unperturbed
volume-equivalent droplet radius, and ν0 is the unperturbed kinematic viscosity of
the gas surrounding the droplet. Typical values of the parameters corresponding
to the values given in YPT are as follows: ω = 2π × 56000 Hz, a ∼ 10−1 cm, and
ν0 ∼ 0.15 cm2 s−1. For these values Re = 2.3× 104 � 1, and the assumption definitely
holds.

(vi) Denote the effective pressure amplitude of the incident acoustic field A0e, and
introduce

B =
A0e

ρ0c0

, (2.2)

which is a velocity scale based on the amplitude (actually B is the gas particle velocity
amplitude), ρ0 is the unperturbed gas density, and c0 is the sound velocity.

We assume that the reciprocal Strouhal number

S−1 =
B

ωa
� 1, (2.3)

which is identical to the assumption used by Schlichting (1932, 1979) for a scale of
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gas particle displacement s:

s =
B

ω
� a. (2.4)

Therefore in our case the Strouhal number S is assumed to be large. For the high
values of Re and S we are dealing with, the acoustic boundary layer (the Stokes layer)
is formed in the gas near the droplet surface.
Note that

B

ωa
=

A0e

ρ0c
2
0

1

Ω
, Ω =

ωa

c0

. (2.5a, b)

The value of the pressure amplitude corresponding to the sound pressure level
(SPL) of, say, 160 dB is about A0e = 2 × 104 dyne cm−2 (cf. (9.12) below). Given
ρ0 = 1.18 × 10−3 g cm−3 and c0 = 3.4 × 104 cm s−1, the value of the dimensionless
pressure amplitude A0e/(ρ0c

2
0) = O(10−2), like in YPT, whereas Ω ∼ 1, and thus via

(2.5a) condition (2.3) always holds. Therefore in our case B/(ωa) ∼ 10−2, and we can
also apply the method of successive approximations based on (2.3). Note that for
a ∼ 10−1 cm and ω = 2π× 56000 Hz we obtain B ≈ 352 cm s−1.

(vii) We assume that the Stefan flow at the droplet surface arising due to evap-
oration is negligible and impose the condition of zero normal velocity there. This
assumption is not restrictive and may be removed if necessary (which is expected to
yield only minor changes).

It is emphasized that we do not assume anything about the droplet shape (except
that it is axisymmetric) or displacement from the pressure node. We also do not
impose any restrictions on the value of Ω = ωa/c0 = ka (with k = 2π/λ as a sound
wavenumber), whereas Burdukov & Nakoryakov (1965b) assumed Ω � 1. The values
of Ω ∼ 1 correspond to levitated droplets studied theoretically and experimentally in
YPT.

3. Compressible acoustic boundary layer in the gas near the droplet surface
The equations of the unsteady compressible boundary layer in the gas near the

surface of a body of revolution (a droplet) take the form (Schlichting 1979)

∂ρr

∂t
+
∂ρur

∂x
+
∂ρvr

∂y
= 0, (3.1a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ρ

(
∂U

∂t
+U

∂U

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
. (3.1b)

Here x is the arclength of the droplet generatrix from the bottom O1 (see figure 1); y
is the coordinate normal to x (y = 0 at the droplet surface); u and v are the velocity
components in the x- and y-directions; ρ and µ are the gas density and viscosity,
respectively.

The droplet shape (given by two coordinates r(x) and z(x), see figure 1) is considered
to be known, since it was calculated in YPT. The velocity distribution U at the outer
boundary of the boundary layer is also known (we discuss it in more detail below in
this section).

The pressure p in the gas may be represented as a sum of an unperturbed pressure
p0 and perturbations produced by the incident and scattered acoustic fields p′i and p′s

p = p0 + p′i + p′s. (3.2)
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Figure 1. Sketch of the incident acoustic wave and a levitated droplet,
with the frames of reference.

According to YPT, in the acoustic levitator

p′i = A0ee
−iωt cos

ωz1

c0

, p′s = A0ee
−iωtps, (3.3a, b)

where t is time, i is the imaginary unit, and the factor ps satisfies the Helmholtz
equation

∆ps +

(
ω

c0

)2

ps = 0. (3.4)

Note also that z1 = z + L, where L is a displacement of a probe (or an imaginary)
spherical particle from the pressure antinode (see YPT). In YPT equation (3.4) was
solved using the boundary element method, which allowed determination of the
acoustic field scattered from an oblate droplet displaced from the pressure node.
Therefore we can consider the real and imaginary parts of ps = psr(x) + ipsi(x) to be
known at the droplet surface and according to (3.2) and (3.3a) the real part of the
pressure distribution over the droplet surface is given as

p = p0 + p′ = p0 + A0e cosωt

(
cos

ωz1

c0

+ psr

)
+ A0e sinωt psi, (3.5)

where p′ = p′i + p′s.
Primarily the velocity of the gas in the acoustic field v′ is related to the pressure

perturbation according to

v′ = ∇
(
− 1

ρ0

∫ t

0

p′dt

)
. (3.6)

Equations (3.5) and (3.6) allow determination of the velocity distribution U over the
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outer boundary of the acoustic boundary layer entering equation (3.1b) as

U =
A0e

ωρ0

[
cosωt

∂psi

∂x
+ sinωt

(
sin

ωz1

c0

ω

c0

∂z

∂x
− ∂psr

∂x

)]
. (3.7)

To simplify the continuity equation (3.1a), we note that the following estimates hold:

u ∼ B, U ∼ B, (3.8a, b)

where B is given by (2.2).
The thickness of the acoustic boundary layer (the inner streaming layer) is of the

order of δ = (2ν0/ω)1/2 (Schlichting 1932, 1979). The scale of x is a, whereas the scale
of y in the boundary layer is δ. Since in the boundary layer (either incompressible
or compressible) ∂u/∂x should be of the order of ∂v/∂y, we obtain with the help of
(3.8a)

v ∼ B

a

(
2ν0

ω

)1/2

. (3.9)

In the acoustic field (Landau & Lifshitz 1959, § 64)

ρ′ =
p′

c2
0

(3.10)

and thus due to (3.3)

ρ′ ∼ A0e

c2
0

, (3.11)

where ρ′ is the density perturbation. Considering the second term of the continuity
equation (3.1a) and accounting for ρ = ρ0 + ρ′, we obtain

∂ρur

∂x
= ρ

∂ur

∂x
+ ur

∂ρ′

∂x
, (3.12)

where x ∼ a and r ∼ a. Thus due to (3.8a)

ρ
∂ur

∂x
∼ ρ0B, ur

∂ρ′

∂x
∼ BA0e

c2
0

. (3.13)

Therefore
ur∂ρ′/∂x
ρ∂ur/∂x

=
A0e

ρ0c
2
0

∼ 10−2 (3.14)

and we can neglect the term ur∂ρ′/∂x relative to ρ∂ur/∂x.
Similarly, for the third term of the continuity equation (3.1a)

∂ρvr

∂y
= ρ

∂vr

∂y
+ vr

∂ρ′

∂y
(3.15)

we find that, for y ∼ δ = (2ν0/ω)1/2 and v estimated as in (3.9), one can neglect
vr∂ρ′/∂y relative to ρ∂vr/∂y.

As a result, the continuity equation (3.1a) is reduced in the leading order to

∂ur

∂x
+
∂vr

∂y
= − r

ρ0

∂ρ′

∂t
. (3.16)

Substituting (3.10) and (3.5) in (3.16), we obtain the continuity equation in the
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final form

∂ur

∂x
+
∂vr

∂y
= −r ω

c0

B

[
−
(

cos
ωz1

c0

+ psr

)
sinωt+ psi cosωt

]
. (3.17)

To rearrange the momentum equation (3.1b), we assume the viscosity–temperature
dependence in the power-law form

µ

µ0

=

(
T

T0

)n
, (3.18)

where the subscript zero denotes the unperturbed values, which in the linear approxi-
mation reduces to

µ = µ0

(
1 + n

T ′

T0

)
, (3.19)

where T ′ is the temperature perturbation.
From the equation of state p/ρ = RsT (Rs is the specific gas constant) it follows

that in the linear acoustic approximation

p′

p0

− ρ′

ρ0

=
T ′

T0

. (3.20)

We assume the situation to be almost adiabatic over the boundary layer thickness,
neglecting at the moment a possible effect on the boundary layer of the latent heat
of evaporation, or heating/cooling from the droplet side. In this case the adiabatic
law pρ−γ = p0ρ

−γ
0 approximately holds (γ is the adiabatic index), and in the linear

acoustic approximation

p′

p0

= γ
ρ′

ρ0

(3.21)

which is identical to (3.10) since c2
0 = γp0/ρ0.

Combining (3.19)–(3.21) and (3.10), we arrive at

µ = µ0

[
1 + n (γ − 1)

p′

ρ0c
2
0

]
. (3.22)

With the help of (3.10) we can rearrange ρ = ρ0

(
1 + ρ′/ρ0

)
to the form

ρ = ρ0

(
1 +

p′

ρ0c
2
0

)
. (3.23)

Combining (3.22) and (3.23), we obtain in the linear acoustic approximation

ν = ν0

{
1 + [n (γ − 1)− 1]

p′

ρ0c
2
0

}
. (3.24)

Accounting for the fact that in the boundary layer ∂p′/∂y = 0 and, as a result, from
(3.22) ∂µ/∂y = 0, we obtain from (3.1b) the momentum equation in its final form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+U

∂U

∂x
+ ν0

{
1 + [n (γ − 1)− 1]

p′

ρ0c
2
0

}
∂2u

∂y2
. (3.25)

In this equation p′ and U are given by (3.5) and (3.7).
Summarizing this section, we note that the equations describing the acoustic stream-

ing arising in the boundary layer near a droplet are (3.17) and (3.25).
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4. Acoustic streaming
A solution of the boundary layer equations (3.17) and (3.25) may be obtained

by applying the method of successive approximations outlined in Schlichting (1932,
1979). Bearing in mind (3.8) and (3.9), we obtain the estimates

∂u

∂t
∼ Bω, u

∂u

∂x
∼ v ∂u

∂y
∼ B2

a
, (4.1a, b)

∂U

∂t
∼ Bω, U

∂U

∂x
∼ B2

a
. (4.1c, d)

Also according to (3.5), (2.2) and (2.5b)

p′

ρ0c
2
0

∼ A0e

ρ0c
2
0

=
B

c0

=
B

ωa
Ω. (4.2)

In the case at hand, Ω = O(1) which yields

p′

ρ0c
2
0

∼ B

ωa
. (4.3)

Also

∂2u

∂y2
∼ B ω

2ν0

. (4.4)

Combining (4.3) and (4.4), we obtain the estimates

ν0

∂2u

∂y2
∼ Bω, ν0 [n (γ − 1)− 1]

p′

ρ0c
2
0

∂2u

∂y2
∼ B2

a
. (4.5)

Terms of the order B2/a in (4.1) and (4.5) (and thus in (3.25)) are much smaller than
those of the order Bω according to (2.3), which allows us to apply the method of
successive approximations to solve (3.25). Thus we employ the asymptotic expansions

u = u0(x, y, t) + u1(x, y, t), v = v0(x, y, t) + v1(x, y, t) (4.6a, b)

with

u0 ∼ B, u1 ∼ εB, ε =
B

ωa
� 1,

v0 ∼ B

a

(
2ν0

ω

)1/2

, v1 ∼ εB
a

(
2ν0

ω

)1/2

,

 (4.7)

where the last two estimates of (4.7) are related to (3.9).
Substituting (4.6) in (3.25), we obtain in the leading order (Bω) according to (4.1),

(4.5) and (4.7) the equation

∂u0

∂t
= ν0

∂2u0

∂y2
+
∂U

∂t
, (4.8a)

y = 0, u0 = 0, (4.8b)

y = ∞, u0 = U = A(x) cosωt+ A1(x) sinωt. (4.8c)

The boundary conditions (4.8b, c) show that the solution of (4.8a) is subject to the
no-slip and matching conditions. The boundary condition (4.8b) neglects the internal
circulation of liquid inside the droplet in the leading order. This assumption is
supported by the estimates in Appendix B.
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According to (3.7) and (2.2)

A(x) = B
c0

ω

∂psi

∂x
, (4.9a)

A1(x) = B
c0

ω

(
sin

ωz1

c0

ω

c0

∂z

∂x
− ∂psr

∂x

)
. (4.9b)

The solution of (4.8) is given by

u0 = A(x)
[
cosωt− e−η cos (ωt− η)

]
+ A1(x)

[
sinωt− e−η sin (ωt− η)

]
, (4.10a)

η = y

(
ω

2ν0

)1/2

. (4.10b)

Substituting expansions (4.6) into the continuity equation (3.17), we arrive in the
leading order at

∂u0r

∂x
+
∂v0r

∂y
= −r ω

c0

B

[
−
(

cos
ωz1

c0

+ psr

)
sinωt+ psi cosωt

]
. (4.11)

Substituting (4.10a) into (4.11) and integrating, we obtain for v0 the equation

v0 = −
(
ω

2ν0

)−1/2{(
dA

dx
+

dr/dx

r
A

)
×[η cosωt− 1

2
e−η (− cos η + sin η) cosωt− 1

2
e−η

× (− sin η − cos η) sinωt− 1
2

cosωt− 1
2

sinωt
]

+

(
dA1

dx
+

dr/dx

r
A1

)[
η sinωt− 1

2
e−η (− cos η + sin η) sinωt

+ 1
2
e−η (− sin η − cos η) cosωt− 1

2
sinωt+ 1

2
cosωt

]
+ η

ω

c0

B

[
−
(

cos
ωz1

c0

+ psr

)
sinωt+ psi cosωt

]}
. (4.12)

Separating the terms of the order Bωε in (3.25), we arrive at the equation

∂u1

∂t
− ν0

∂2u1

∂y2
= U

∂U

∂x
− u0

∂u0

∂x
− v0

∂u0

∂y
+ ν0 [n (γ − 1)− 1]

p′

ρ0c
2
0

∂2u0

∂y2
(4.13)

subject to the boundary conditions

y = 0, u1 = 0; y = ∞, ∂u1

∂y
= 0 . (4.14)

The boundary condition for y = 0 in (4.14) neglects the internal circulation of liquid
inside the droplet of O(εB), which is supported by the calculations and estimates in
Appendix B.

Our goal is to find a steady average component of the secondary flow u1, namely
〈u1〉, where the averaging is carried out over many cycles of the sound wave, which
means that

〈cos2 ωt〉 = 〈sin2 ωt〉 = 1
2
, 〈sinωt cosωt〉 = 0. (4.15a, b)

Since 〈∂u1/∂t〉 = 0, equation (4.13), being averaged, reduces to

−ω
2

∂2〈u1〉
∂η2

=

〈
U
∂U

∂x
− u0

∂u0

∂x
− v0

∂u0

∂y
+ ν0 [n (γ − 1)− 1]

p′

ρ0c
2
0

∂2u0

∂y2

〉
. (4.16)
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This equation is integrated accounting for (4.10a), (4.12), boundary condition (4.14)
for y = ∞, as well as the expression for U in (4.8c), and (4.15), which yields

〈u1〉 = C +
1

ω

(
A

dA

dx
+ A1

dA1

dx

)
×
[
e−η
(
2 sin η + 1

2
cos η

)
+
ηe−η

2
(− cos η + sin η) +

e−2η

4

]
+

1

ω

dr/dx

r

(
A2 + A2

1

) [
e−η
(
sin η + 1

2
cos η

)
+
ηe−η

2
(− cos η + sin η)

]
− 1

ω

(
A

dA1

dx
− A1

dA

dx

)[
ηe−η

2
(sin η + cos η) + 1

2
e−η cos η − e−η sin η − e−2η

4

]

+
B

2c0

{
A

[(
ηe−η cos η + e−η cos η − e−η sin η

)(
cos

ωz1

c0

+ psr

)

+
(
ηe−η sin η + e−η sin η + e−η cos η

)(
cos

ωz1

c0

+ psr

)]
+A1

[
− (ηe−η sin η + e−η sin η + e−η cos η

)(
cos

ωz1

c0

+ psr

)
+
(
ηe−η cos η + e−η cos η − e−η sin η

)(
cos

ωz1

c0

+ psr

)]
+Apsi

(
ηe−η sin η + e−η sin η − ηe−η cos η + e−η sin η

)
+A1psi

(
ηe−η cos η + e−η cos η + ηe−η sin η + e−η cos η

)}

+ [n (γ − 1)− 1]
B

2c0

[
Apsie

−η sin η + Ae−η cos η

(
cos

ωz1

c0

+ psr

)
− A1e

−η sin η

(
cos

ωz1

c0

+ psr

)
+ A1psie

−η cos η

]
. (4.17)

The constant of integration C in (4.17) is defined by the no-slip condition for 〈u1〉
following from the boundary condition (4.14) for y = 0, namely 〈u1〉 = 0 at η = 0 (cf.
(B 7) of Appendix B), which yields

C = − 1

ω

(
A

dA

dx
+ A1

dA1

dx

)
3

4
− 1

ω

dr/dx

r

(
A2 + A2

1

) 1

2
+

1

ω

(
A

dA1

dx
− A1

dA

dx

)
1

4

−B
c0

{
1 +

[n (γ − 1)− 1]

2

}[
A

(
cos

ωz1

c0

+ psr

)
+ A1psi

]
. (4.18)

It is seen from (4.17) that outside the acoustic boundary layer, as η →∞, an average
steady secondary flow exists, since 〈u1〉 tends to the limiting velocity C

〈u1〉 → C as η →∞. (4.19)

This flow is called acoustic streaming. Denoting 〈u1〉|η→∞ = 〈u1∞〉, we obtain from
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(4.17) and (4.18) the expression for the acoustic streaming velocity

〈u1∞〉 = − 1

ω

(
A

dA

dx
+ A1

dA1

dx

)
3

4
− 1

ω

dr/dx

r

(
A2 + A2

1

) 1

2
+

1

ω

(
A

dA1

dx
− A1

dA

dx

)
1

4

−B
c0

{
1 +

[n (γ − 1)− 1]

2

}[
A

(
cos

ωz1

c0

+ psr

)
+ A1psi

]
. (4.20)

The velocity field of the acoustic streaming arising at the outer boundary of
the acoustic boundary layer is sketched in figures 2(a) and 2(b) (the corresponding
numerical results are depicted in figures 14(a)–14(e) below).

The inner acoustic streaming also generates a system of large-scale toroidal vortices
about the droplet, the so-called outer acoustic streaming. In simple levitators without
any additional blowing, these vortices were found experimentally in Trinh & Robey
(1994). They were also calculated in Riley (1966) and Lee & Wang (1990). The vortices
are shown schematically in figure 2(c), and represent almost closed recirculation zones.
There are several possible causes for such vortices. Among them are the interaction of
the flow with the confinement walls, the displacement of the droplet from the pressure
nodal point, and the interaction with another superimposed flow. In the first case the
characteristic scale L∗ of the vortices should be of the order of the cross-sectional
diameter of the confinement (and thus much larger than the initial volume-equivalent
droplet radius a0). In the other cases L∗ is of the order of several droplet radii.

In the case of a superimposed external blowing along the levitator axis (like that
of Seaver et al. 1989; Seaver & Peele 1990; Trinh & Robey 1994 and Yarin et al.
1997), or normal to it as in the present work, the vortices may be ventilated by the
external stream. Experimental evidence of Trinh & Robey (1994) and of the present
work supports the idea of such ventilation. These vortices and their ventilation due
to external blowing have an important effect on the droplet evaporation rate (see the
discussion in § 8 and § 9 below).

5. Incompressible limit of the inner acoustic streaming in the case of a small
spherical particle

The displacement of a very small light particle from the pressure node becomes
negligibly small compared to the sound wavelength. Thus we consider a particle
positioned at a pressure node. Therefore, its displacement from the pressure antinode
(see figure 1) is

L =
πc0

2ω
. (5.1)

Therefore we find
ωz1

c0

=
ωz

c0

+
π

2
. (5.2)

Since z ∼ a, the term ωz/c0 ∼ ωa/c0 = Ω � 1 in the present case (the long-wave,
incompressible limit which we consider in this section), and thus

ωz1

c0

=
π

2
. (5.3)

Also the non-dimensional Helmholtz equation (3.4) reads

∆̄ps + Ω2ps = 0, (5.4)

where ∆̄ denotes the non-dimensional Laplacian with the coordinates scaled by a.
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O1

O2

O3

(a) (b)

0 x2 x3 x

-u1∞.

(c)

O1

O2

O3

x

L*

Inner acoustic streaming
at the boundary of the
acoustic boundary layer

Outer acoustic streaming

x

Figure 2. Sketches of the acoustic streaming field near the levitated droplet and the system of the
outer toroidal vortices. (a) The streamlines of the average secondary flow near the outer boundary
of the acoustic boundary layer. (b) The distribution of 〈u1∞〉 over the droplet surface. x is the
arclength of the droplet generatrix from the bottom O1; x2 and x3 correspond to points O2 and
O3. (c) The outer toroidal vortices (the outer acoustic streaming flow) emerging in the space of the
levitator.

For Ω � 1 the last term in (5.4) is negligibly small, and Laplace equations for the
real and imaginary parts of ps

∆psr = 0, ∆psi = 0 (5.5)

emerge with

psr → 0, psi → 0 as R →∞, (5.6)
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where R is the radial spherical coordinate (R = 0 at the particle centre coincident
with the pressure node).

The boundary conditions at the surface of the particle (assumption (ii) in § 2)
correspond to ∂p/∂R = 0 at R = a. Accounting for (3.2) and (3.3a), we obtain the
boundary conditions at the sphere surface

∂psr

∂R
= − ∂

∂R

[
cos

(
ωz1

c0

)]
,

∂psi

∂R
= 0 at R = a. (5.7a, b)

From the Laplace equation for psi in (5.5), and the conditions for psi in (5.6) and
(5.7b) we obtain

psi ≡ 0, (5.8)

whereas, accounting for the geometric expression

∂

∂R
= −∂z

∂x

∂

∂r
+
∂r

∂x

∂

∂z
(5.9)

condition (5.7a) yields

∂psr

∂R
= − ∂r

∂x

ω

c0

sin
ωz1

c0

= − ∂r
∂x

ω

c0

at R = a. (5.10)

Note that the last equality in (5.10) follows from (5.3).
The r-coordinate of the sphere surface is evidently given by

r = a sin
x

a
(5.11)

whereby

∂r

∂x
= cos θ, θ =

x

a
(5.12a, b)

in which θ is the angular spherical coordinate reckoned from the levitator axis (see
figure 1).

Due to (5.10) and (5.12a) the boundary condition for psr at the sphere surface
reads

∂psr

∂R
= −ω

c0

cos θ at R = a. (5.13)

The solution of the Laplace equation for psr in (5.5) satisfying the conditions for
psr in (5.6) and (5.13) is given by

psr =
ωa3

2c0

cos θ

R2
(5.14)

which yields

psr =
ωa

2c0

cos θ =
ωa

2c0

cos
x

a
at R = a. (5.15)

Substituting (5.8), (5.15) and (5.3) into (4.9) and accounting for the fact that

z = a
(

1− cos
x

a

)
,

∂z

∂x
= sin

x

a
, (5.16)

we arrive at

A ≡ 0, A1 =
3

2
B sin

x

a
. (5.17)



Evaporation of acoustically levitated droplets 165

O1

O2

O3

x

x1

d

d
$ F G

D
E

A

H

C B

Figure 3. Sketch of the acoustic streaming over a small sphere positioned at the pressure node. The
thicknesses of the acoustic and diffusion boundary layers, δ and δD, are also shown schematically.
The four closed loops inside the acoustic boundary layer AB, CD, EF, and GH represent the whole
structure of the steady flow emerging there.

Substituting (5.17), (5.8) and (5.15) into (4.20), we obtain

〈u1∞〉 = −45

32

B2

ωa
sin

2x

a
(5.18)

which yields the well-known pattern of the acoustic streaming near a sphere re-
produced in figure 3. The corresponding experimental verifications can be found in
Schlichting (1979) and Trinh & Robey (1994) (in the latter work some additional
references are given).

Note that expression (5.18) was obtained in Burdukov & Nakoryakov (1965b): their
(2.8) with 1.406 ≈ 45/32. It also follows from equation (38) of Lee & Wang (1989)
and equation (15) of Lee & Wang (1990). According to (5.18) the characteristic scale
of the acoustic streaming velocity Bs is given by

Bs =
B2

ωa
. (5.19)

Since according to the estimates of § 2 B/(ωa) ∼ 10−2, equation (5.19) shows that
Bs ∼ 10−2B. According to the estimate of § 2, B = 352 cm s−1. Therefore from (5.19)
we obtain Bs ≈ 3.52 cm s−1. The streaming Reynolds number Res is defined following
Stuart (1966) as

Res =
Bsa

ν0

=
B2

ων0

. (5.20)

For a ∼ 10−1 cm and ν0 ∼ 0.15 cm2 s
−1

, we obtain Res ≈ 2.35.
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6. Mass transfer at the surface of the acoustically levitated droplet
We turn back to the general case of the acoustically levitated droplet acquiring

an oblate shape and displaced below the pressure node. For the sake of brevity we
consider only mass transfer during evaporation. In the case where the SPL is high
enough and thus the inner acoustic streaming dominates free convection, and when
radiation is neglected, the calculation for heat transfer may be performed similarly,
so we refer only to the final result.

Denote the concentration of evaporating (or sublimating) material of the droplet
(or particle) in air by c. In what follows the dimension of the concentration is g cm−3.
The diffusion equation in the boundary layer near the droplet/particle surface reads

ρ

(
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y

)
=

∂

∂y

(
ρD ∂c

∂y

)
, (6.1)

where D is the mass diffusion coefficient.
Also

D = D0 +D′, (6.2)

where an unperturbed value of the diffusion coefficient is denoted by subscript zero,
whereas D′ is a perturbation due to the sound wave.

In general D′ = D′(p′, ρ′, T ′), however via (3.10) and (3.20) this reduces to the
dependence D′ = D′(p′).

The term
∂ρD′
∂y

∂c

∂y
=

(
∂p′

∂y

D′
c2

0

+ ρ
∂D′
∂y

)
∂c

∂y
(6.3)

arising on the right in (6.1) vanishes since in the boundary layer ∂p′/∂y = 0. As usual
in the theory of the diffusion boundary layer, we expect its thickness δD to be of the
order

δD ∼ a(
Ba/D0

)1/2
(6.4)

accounting for the fact that
(
ν0/D0

)1/2
= O(1), which holds for most practically

important liquids and certainly for all liquids studied experimentally in § 9.
Since the thickness of the acoustic boundary layer scales as δ ∼ (2ν0/ω)1/2, we

obtain

δ

δD
=

(
2ν0

D0

)1/2(
B

ωa

)1/2

. (6.5)

Given ν0 = 0.15 cm2 s−1 and ω = 2π × 56000 Hz we find δ = (2ν0/ω)1/2 = 0.92 ×
10−3 cm. Also for the characteristic values of (2ν0/D0)

1/2 ∼ 1 and B/ωa ∼ 10−2 (for
the latter cf. § 2) we find from (6.5) that δD = 10δ = 0.92 × 10−2 cm. Therefore for
a ∼ 10−1 cm the following inequalities hold:

δ � δD � a. (6.6)

This means that, on the one hand, the outer boundary of the acoustic boundary
layer practically coincides with the droplet/particle surface when one considers mass
transfer. On the other hand, the outer boundary of the diffusion boundary layer
still does not extend to the region where the acoustic streaming field begins to vary
significantly relative to the values at the outer boundary of the acoustic boundary
layer. Indeed, according to Lee & Wang (1990), such a variation in the outer streaming
flow is felt on the scales of the order of several droplet radii. Therefore, as a plausible
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approximation we can assume that the velocity components u = u0 +u1 and v = v0 +v1

in (6.1) (throughout the diffusion boundary layer) correspond in reality to those at
the outer boundary of the inner acoustic boundary layer, which is denoted below by
subscript ∞.

We also split the concentration field into a steady (cs) and an unsteady part (cu), as
c = cs + cu, where ∂cs/∂t = 0. Therefore accounting for (6.2), we transform equation
(6.1) to the form

∂cu

∂t
+ u0∞

∂cs

∂x
+ u0∞

∂cu

∂x
+ u1∞

∂cs

∂x
+ u1∞

∂cu

∂x
+ v0∞

∂cs

∂y
+ v0∞

∂cu

∂y
+ v1∞

∂cs

∂y
+ v1∞

∂cu

∂y

= D0

∂2cs

∂y2
+D0

∂2cu

∂y2
+D′ ∂

2cs

∂y2
+D′ ∂

2cu

∂y2
. (6.7)

According to (4.6), (4.7) and (2.3)

u1∞
u0∞
∼ B

ωa
� 1,

v1∞
v0∞
∼ B

ωa
� 1 (6.8)

which allows us to neglect in (6.7) the terms u1∞∂cs/∂x+ u1∞∂cu/∂x and v1∞∂cs/∂y +
v1∞∂cu/∂y compared to the corresponding terms containing u0∞ and v0∞.

Also at high ultrasonic frequencies (which is our case) we can expect that cu � cs,
which we prove a posteriori below. As a result of this assumption, we can neglect
in (6.7) the terms u0∞∂cu/∂x and v0∞∂cu/∂y as compared to the corresponding terms
containing cs.

To show that cu � cs at high ultrasonic frequencies, we notice the following. Far
enough from the droplet we expect the diffusion terms on the right in (6.7) to be weak
compared to the remaining convective terms on the left, as previously was assumed
by Lighthill (1954) (cf. his equation (5.9)). Thus neglecting the diffusion term, we
arrive at the final form of the instantaneous diffusion equation

∂cu

∂t
+ u0∞

∂cs

∂x
+ v0∞

∂cs

∂y
= 0 (6.9)

which yields after integration the unsteady part of the concentration as

cu = −∂cs
∂x

∫
u0∞ dt− ∂cs

∂y

∫
v0∞ dt. (6.10)

Since according to (4.10a) and (4.12)∫
u0∞ dt ∼ 1

ω
,

∫
v0∞ dt ∼ 1

ω
, (6.11)

we see that cu indeed tends to zero as ω →∞, as expected.
Using (6.9), we obtain〈
u0∞

∂cu

∂x
+ v0∞

∂cu

∂y

〉
= −∂

2cs

∂x2

〈
u0∞

∫
u0∞ dt

〉
− ∂cs

∂x

〈
u0∞

∫
∂u0∞
∂x

dt

〉
− ∂2cs

∂x∂y

〈
u0∞

∫
v0∞ dt

〉
− ∂cs

∂y

〈
u0∞

∫
∂v0∞
∂x

dt

〉
− ∂2cs

∂x∂y

〈
v0∞
∫
u0∞ dt

〉
− ∂2cs

∂y2

〈
v0∞
∫
v0∞ dt

〉
− ∂cs

∂y

〈
v0∞
∫
∂v0∞
∂y

dt

〉
. (6.12)

The calculation of the correlations on the right in (6.12) is given in Appendix A.
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Accounting for (A 2) and (A 3), we obtain〈
u0∞

∂cu

∂x
+ v0∞

∂cu

∂y

〉
= − 1

2ω

(
−AdA1

dx
+ A1

dA

dx

)
∂cs

∂x
+ O

(
B
B

ωa

δ

a

)
∂cs

∂y
. (6.13)

Averaging equation (6.7) in time, we obtain

〈u1∞〉∂cs
∂x

+ 〈v1∞〉∂cs
∂y

= D0

∂2cs

∂y2
−
〈
u0∞

∂cu

∂x
+ v0∞

∂cu

∂y

〉
+

〈
D′ ∂

2cu

∂y2

〉
, (6.14)

whereas the continuity equation (3.17), accounting for (4.6), yields for the components
of the average acoustic streaming

∂
(〈u1∞〉r)
∂x

+
∂
(〈v1∞〉r)
∂y

= 0. (6.15)

Integrating (6.15), we arrive at

〈v1∞〉 = −1

r

∂
(〈u1∞〉r)
∂x

y. (6.16)

In the diffusion boundary layer y ∼ δD, x ∼ a and therefore from (6.16)

〈v1∞〉 ∼ δD
a
〈u1∞〉 (6.17)

and also

∂cs

∂x
∼ δD

a

∂cs

∂y
. (6.18)

Using (6.16) and (6.17), we estimate

〈u1∞〉∂cs
∂x

+ 〈v1∞〉∂cs
∂y
∼ δD

a
〈u1∞〉∂cs

∂y
. (6.19)

Expressions (6.13) and (6.19) allow us to estimate the ratio

〈u0∞∂cu/∂x+ v0∞∂cu/∂y〉
〈u1∞〉∂cs/∂x+ 〈v1∞〉∂cs/∂y ∼

− (2ω)−1
(−AdA1/dx+ A1dA/dx

)
∂cs/∂x

〈u1∞〉 (δD/a) ∂cs/∂y
+O

(
B2

ωa

δ

δD
1

〈u1∞〉
)
. (6.20)

Recalling (6.18) as well as the fact that 〈u1∞〉 ∼ B2/ (ωa), (6.20) may be written as

〈u0∞∂cu/∂x+ v0∞∂cu/∂y〉
〈u1∞〉∂cs/∂x+ 〈v1∞〉∂cs/∂y ∼

− (2ω)−1
(−AdA1/dx+ A1dA/dx

)
〈u1∞〉 + O

(
δ

δD

)
. (6.21)

According to (4.20) the first term on the right in (6.21) is of the order of one,
whereas according to (6.6) the second term is negligibly small. This leads to the
conclusion that only the first term on the right in (6.13) cannot be neglected after
substitution in (6.14) compared to the left-hand side of (6.14). As a result, (6.14) takes
the form

〈u1∞〉∂cs
∂x

+ 〈v1∞〉∂cs
∂y

= D0

∂2cs

∂y2
+

1

2ω

(
−AdA1

dx
+ A1

dA

dx

)
∂cs

∂x
+

〈
D′ ∂

2cu

∂y2

〉
. (6.22)
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To deal with the last term of equation (6.22), we introduce the Schmidt number Sc,
as D = ν/Sc. Then using (3.24), we obtain

D = D0

{
1 + [n (γ − 1)− 1]

p′

ρ0c
2
0

}
, D0 = ν0/Sc. (6.23a, b)

A plausible assumption for gases is n ≈ 1 and γ ≈ 1.4. Therefore n (γ − 1)−1 ≈ −0.6.
Since in the parameter range of the present work p′/

(
ρ0c

2
0

) ∼ A0e/
(
ρ0c

2
0

) ∼ 10−2, the
sound term on the right in (6.23a) is negligibly small as compared to the first one,
and thus D′ is negligibly small. Note also that the term [n (γ − 1)− 1] /2 is of the
order of 0.1 and may be neglected as compared to 1 to simplify the expression for
〈u1∞〉 in (4.20).

Equation (6.22) reduces now to the form

〈ũ1∞〉∂cs
∂x

+ 〈v1∞〉∂cs
∂y

= D0

∂2cs

∂y2
(6.24a)

〈ũ1∞〉 = 〈u1∞〉 − 1

2ω

(
−AdA1

dx
+ A1

dA

dx

)
. (6.24b)

Substituting (6.16) into (6.24a), we obtain

∂2cs

∂y2
+ P (x)y

∂cs

∂y
= Q(x)

∂cs

∂x
, (6.25)

where

P (x) =
1

D0r

∂〈u1∞〉r
∂x

, Q(x) =
〈ũ1∞〉
D0

(6.26)

are known functions.
The concentration cs is subject to the boundary conditions

y = 0, cs = csb, (6.27a)

y = ∞, cs = cs∞, (6.27b)

which means that at the surface the concentration is equal to a known value csb,
corresponding to the saturation conditions, whereas far from the droplet it approaches
a value cs∞ which is discussed in detail in § 8.

The solution of (6.25) with the boundary conditions (6.27) is given by

cs = cs∞ + (csb − cs∞)

[
1− erf

(
Z

2

)]
(6.28)

with

Z = y

[
e−W (x)

∫ x

x2

eW (ξ)

Q(ξ)
dξ

]−1/2

, W (x) = 2

∫ x

x2

P (ξ)

Q(ξ)
dξ, (6.29a, b)

where x2 is the arclength to the stagnation point O2 of the inner acoustic streaming
flow (figure 2a).

The time-averaged mass transfer coefficient 〈h〉 is given by

〈h〉 (csb − cs∞) = −D0

∂cs

∂y

∣∣∣∣
y= 0

(6.30)
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and thus, via (6.26) and (6.28)–(6.30), we obtain a distribution of the time-averaged
Sherwood number 〈Sh〉 over the droplet surface

〈Sh〉 =
〈h〉2a
D0

=
2a

(πD0)
1/2

[∫ x

x2

eW (ξ)−W (x)

〈ũ1∞(ξ)〉 dξ

]−1/2

, (6.31)

where

W (x) = 2

∫ x

x2

1

r〈ũ1∞〉
∂〈u1∞〉r
∂ξ

dξ (6.32)

and 〈u1∞〉 and 〈ũ1∞〉 are given by (4.20) and (6.24b), respectively. In (6.31), a is a
current volume-equivalent radius of the droplet.

Averaging of 〈Sh〉 over the droplet surface yields

〈Sh〉 =

∫ l

0

〈Sh〉rdx
/∫ l

0

rdx, (6.33)

where l is half of the perimeter of the droplet cross-section.

Note that the results (6.31) and (6.33) of this section cannot be extrapolated to the
case of vanishing acoustic field (ω → 0), since they were obtained for Re = ωa2/ν0 � 1
and S−1 = B/(ωa)� 1.

It is emphasized that, regarding the heat transfer problem, one may simply change
D0 on the left in (6.31) for the thermal conductivity of air ka and D0 on the right for
the thermal diffusivity of air κ0, and thus obtain from (6.31) and (6.33) the formulae
for the Nusselt numbers 〈Nu〉 and 〈Nu〉. This, however, requires an assumption that
the SPL is high enough and the temperature differences are small (and radiation can
be neglected), and thus the acoustic streaming flow dominates free convection.

We illustrate the results (6.31) and (6.33), which are the central ones in the present
work, in § 9, also comparing them with experimental data. However, we first consider
their limiting forms. Numerical examples show that, in many cases, the inequality∣∣∣∣−AdA1

dx
+ A1

dA

dx

∣∣∣∣� ∣∣∣∣AdA

dx
+ A1

dA1

dx

∣∣∣∣ (6.34)

holds and, as a result, the last term on the right-hand side in (6.24b) is negligibly
small, and 〈ũ1∞〉 = 〈u1∞〉. Thus it follows from (6.32) that

eW (ξ)−W (x) =

[ 〈u1∞(ξ)〉r(ξ)

〈u1∞(x)〉r(x)

]2

, (6.35)

and consequently (6.31) reduces to

〈Sh〉 =
2a√
πD0

|〈u1∞(x)〉|r(x)√
X

, (6.36a)

X =

∫ x

x2

〈u1∞〉r2dx (6.36b)

which are the limiting forms of (6.31) and (6.32).
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7. Incompressible limit of the Sherwood/Nusselt number in the case of a
small spherical particle

In the case at hand A ≡ 0 and A1 = 3
2
B sin x/a, as shown in (5.17). Also, according

to (5.18) and (5.11)

〈u1∞〉 = −45

32

B2

ωa
sin

2x

a
, r = a sin

x

a
, x2 =

π

2
a (7.1a–c)

(relation (7.1c) defines the arclength between the stagnation points O1 and O2).
In the present case (6.34) definitely holds and formulae (6.36) are exact.
Using (7.1) and considering, for example, the part of the droplet below the stag-

nation point, we obtain from (6.36b)

X =
45

64

B2a2

ω

(
1− sin4 x

a

)
(7.2)

and from (6.36a)

〈Sh〉 = 2

(
45

4π

)1/2
B

(ωD0)
1/2

sin2 x/a(
1 + sin2 x/a

)1/2

= 2

(
45

4π

)1/2
B

(ωD0)
1/2

cos2 x1/a(
1 + cos2 x1/a

)1/2
, (7.3)

where x1 is the arclength reckoned from the stagnation point O2 (figure 3). Note that
this distribution of 〈Sh〉 in terms of x1/a is symmetric about the vertical axis through
point O3 in figure 3 and thus its average over the sphere surface is given by

〈Sh〉 =
2π

4π

∫ π

0

〈Sh〉 cos
x1

a
d
(x1

a

)
=

(
45

4π

)1/2
B

(ωD0)
1/2

= 1.89
B√
ωD0

. (7.4)

Formulae (7.3) and (7.4) represent the limit of the results (6.31) and (6.33) in the case
of a small spherical particle. It is emphasized that the Sherwood number, according
to (7.4), does not depend on the sphere radius a. A formula similar to (7.4) was
published and used in Burdukov & Nakoryakov (1965b) with an erroneous multiplier
(see their equation (3.13) with a factor of 1.3 instead of (45/4π)1/2 = 1.89). As
previously mentioned (7.3) and (7.4) cannot be extrapolated into the low-frequency
domain. Note also that similar calculations for a cylinder yield 〈Sh〉 = 1.76B/

√
ωD0

(Burdukov & Nakoryakov 1965a) and 〈Sh〉 = (96/π3)1/2B/
√
ωD0 = 1.76B/

√
ωD0

(Richardson 1967).
We now apply (7.4) to find the decrease in the radius of a spherical particle

evaporating (or sublimating) in the acoustic field. From (7.4) we obtain

〈h〉 =
1

2

(
45

4π

)1/2
B

(ωD0)
1/2

D0

a
. (7.5)

Therefore the mass loss per unit time is

Qm = 4πa2〈h〉 (csb − cs∞) = 2πa

(
45

4π

)1/2

B

(D0

ω

)1/2

(csb − cs∞) , (7.6)

and the mass balance is given by

d

dt

(
ρl

4
3
πa3
)

= −Qm, (7.7)
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Liquid A∗ B∗ C∗ D∗ E∗

Methanol 18.5875 3626.55 −34.29 24.335 0.0856
Ethanol 18.9919 3803.98 −41.68 24.270 0.0878
Propanol-2 17.5439 3166.38 −80.15 25.370 0.0791
n-Heptane 15.8738 2911.32 −56.51 22.332 0.0996
n-Octane 15.9426 3120.29 −63.63 23.493 0.0940
n-Decane 16.0114 3456.80 −78.67 25.731 0.0934

Table 1. Liquid parameters used to calculate the saturation pressure of the vapour and surface
tension (Reid et al. 1987).

a0∗ 6.107799961
a1∗ 4.436518521× 10−1

a2∗ 1.428945805× 10−2

a3∗ 2.650648731× 10−4

a4∗ 3.031240396× 10−6

a5∗ 2.034080948× 10−8

a6∗ 6.136820929× 10−11

Table 2. Parameters used to calculate the saturation pressure of water vapour
(Seaver et al. 1989).

where ρl is the liquid density. Substituting (7.6) in (7.7) and integrating the resulting
equation assuming cs∞ = const (see §§ 8 and 9), we obtain

a2 = a2
0 −

(
45

4π

)1/2
B

ρl

(D0

ω

)1/2

(csb − cs∞) t, (7.8)

where a0 is the initial value of the particle radius. Denoting

K∗ =

(
45

4π

)1/2

B

(D0

ω

)1/2
(csb − cs∞)

ρl
, (7.9)

we rearrange (7.8) to the form

a2 = a2
0 −K∗t (7.10)

which shows that the lifetime of a droplet or particle is given by

tl =
ρla

2
0

(45D0/(4πω))1/2B(csb − cs∞)
. (7.11)

8. Vapour concentration, droplet temperature and liquid properties
The air/vapour mixture at the droplet surface can be assumed to be saturated since

the phase-change process occurs at a rate which is much faster than the gas-phase
transport processes. Therefore the equation of state of the products of evaporation
may be written at the droplet surface as

psat

csb
=
Rg

M
Ts, (8.1)

where psat is the saturation pressure, Rg is the absolute gas constant, M is the
molecular mass, and Ts is the surface temperature.
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Molecular mass Density Diffusion coefficient Heat of evaporation

Liquid M (g mole−1) ρl (g cm−3) D0 (cm2 s−1), Iv (kJ kg−1)

Methanol 32.042 0.792 0.159151 1189
Ethanol 46.068 0.789 0.121395 941
Propanol-2 60.096 0.785 0.101271 756
n-Heptane 100.198 0.684 0.069396 364
n-Octane 114.224 0.703 0.064598 359
n-Decane 142.276 0.730 0.057349 351

Table 3. Physical parameters of the liquids (Reid et al. 1987, and Fuller et al. 1966) at t = 20 ◦C
and p = 1024 mbar.

The saturation pressure of several liquids is given as a function of the temperature
by the Antoine equation (Reid, Prausnitz & Poling 1987)

psat = 0.001333224 exp

(
A∗ − B∗

Ts + C∗

)
, (8.2)

where psat is given in bar (1 bar = 10−5 N m−2), and Ts is taken in degrees Kelvin.
The values of the parameters A∗, B∗ and C∗ for several liquids are shown in table
1. For water vapour at atmospheric pressure we use the following expression for the
saturation pressure (Seaver et al. 1989):

psat = a0∗ + Ts
[
a1∗ + Ts

(
a2∗ + Ts{a3∗ + Ts [a4∗ + Ts (a5∗ + a6∗Ts)]})] , (8.3)

where psat is given in mbar (1 mbar = 102 N m−2) and Ts is taken in degrees Celsius.
The values of the parameters ai∗ are presented in table 2.

Knowing psat from (8.2) or (8.3), we find csb from (8.1) as

csb =
psat(Ts)M

RgTs
. (8.4)

The physical parameters of the liquids involved in the calculations are listed in
table 3. Their surface tension α is taken to be dependent on Ts according to the
Hakim–Steinberg–Stiel equation (Reid et al. 1987). The equation

α = D∗ − E∗Ts (8.5)

used in the calculations is a linear fit to the Hakim–Steinberg–Stiel equation. The
surface tension α is given in g s−2, and Ts is taken in degrees Celsius. The values of
the parameters D∗ and E∗ are listed in table 1.

For water vapour at atmospheric pressure following Seaver et al. (1989) we take

D0w = 0.211

(
Ts + 273.15

273.15

)1.94

, (8.6a)

Ivw = 595.3 + Ts
(
0.483 + Ts × 1.2× 10−3

)
, (8.6b)

where the diffusion coefficient D0w and the latent heat of evaporation for water Ivw
(denoted by subscript w) are given in cm2 s−1 and cal g−1. The molecular mass, density
and surface tension of water are taken as Mw = 18.016 g mol−1, ρlw = 1 g cm−3, and
α = 72.74 g s−2, respectively.
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For the thermal conductivity of air ka used below we take (Seaver et al. 1989)

ka = 5.8× 10−5 + 1.6× 10−7Ts, (8.7)

where ka is given in cal cm−1 ◦C−1 s−1, and Ts is in degrees Celsius.
We assume that water vapour may be present in air due to its humidity, and thus

the water vapour concentration far from the droplet csh is given by

csh =
p∞HMw

RgT∞
, (8.8)

where H is the relative humidity, and p∞ and T∞ are the pressure and temperature at
infinity.

The surface temperature Ts is found from the thermal balance associated with
the evaporation/condensation processes and heat removal from the droplet surface.
Assuming that the water vapour from the surrounding air condenses at the droplet,
we obtain the thermal balance in the form

〈hT 〉 (T∞ − Ts) = 〈hc〉psatM
RgTs

Iv − 〈hcw〉p∞HMw

RgT∞
Ivw, (8.9)

where 〈hT 〉, 〈hc〉 and 〈hcw〉 are the heat and mass transfer coefficients (〈hc〉 for any

vapour and 〈hcw〉 for water vapour). According to (7.4) we expect

〈hc〉
〈hT 〉

=
D0

ka

(
κ0

D0

)1/2

,
〈hcw〉
〈hT 〉

=
D0w

ka

(
κ0

D0w

)1/2

, (8.10a, b)

where ka and κ0 are the thermal conductivity and diffusivity of air. Solving (8.9) for
Ts and using (8.10a, b), we find

Ts = Y +

[
Y 2 −

(
κ0

D0

)1/2 D0MIv

kaRg
psat(Ts)

]1/2

, (8.11a)

Y =
1

2

[
T∞ +

(
κ0

D0w

)1/2 D0wMwIvw

kaRg

p∞H
T∞

]
. (8.11b)

Equation (8.11a) is solved iteratively to find Ts. Note that in the case of evaporation
of a water droplet, in (8.11a) D0 = D0w , M = Mw and Iv = Ivw . Note also that given
κ0 = 0.208 cm2 s−1 for air and the values of D0 from table 3 or D0w from (8.6a), we
can see that 0.918 6 (κ0/D0)

1/2 6 1.9 and the effect of this factor on the values of Ts
is minor.

Due to the presence of the external toroidal vortices in the levitator space (the
outer acoustic streaming flow; see figure 2c), the vapour concentration cs∞ at the
outer boundary of the diffusion boundary layer at t > 0 may become different from
its known initial value cs∞0 (at t = 0) even for water droplets. Indeed, in the absence of
external blowing, the vortices represent almost closed recirculation zones. Therefore
the mass of vapour mv increases in the vortices when the droplet evaporates. On the
other hand, the external blowing of a gas jet into the vortices reduces the vapour mass
there, since the gas displaces the vapour. Also diffusion from the vortices reduces the
vapour concentration; thus

dmv
dt

= Qm. (8.12)
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For an oblate droplet similarly to (7.7) the mass flow rate is given as

Qm = − d

dt

(
ρl

4
3
πa3
)− (cs∞ − csh)V̇ − D0

R∗
4πR2

∗(cs∞ − csh). (8.13)

Here a is the volume-equivalent droplet radius, cs∞ is the average vapour concentration
in the vortices, which is assumed to be the same as that at the outer boundary of the
diffusion boundary layer, and csh corresponds to the water vapour concentration in
the gas jet due to humidity (given by (8.8)) when we consider evaporation of water
droplets, otherwise (for other fluids) csh = 0; V̇ is the rate of blowing; R∗ is the
effective radius of the vortices.

The first term on the right in (8.13) represents the vapour flux into the vortices due
to droplet evaporation, the second is the vapour loss due to the external blowing, and
the third is vapour loss due to diffusion. Also

mv = cs∞L3
∗, (8.14)

where L3∗ is the volume of the vortices which is assumed to be approximately constant.
Note that R∗ = (3/4π)1/3L∗.

Therefore from (8.12) to (8.14) we obtain the equation governing the time variation
of cs∞ during droplet evaporation

L3
∗
dcs∞
dt

= −ρl 4
3
π

da3

dt
− (cs∞ − csh)V̇ −D0L∗(4π)2/331/3(cs∞ − csh). (8.15)

The concentration cs∞ is subject to the initial condition

t = 0, cs∞ = cs∞0, (8.16)

where cs∞0 is the initial vapour concentration in the surrounding medium.
The simplified description of the mass transfer in the vortices outlined above is only

a first sketch of the mass transfer there. A more accurate analysis might be based, in
principle, on the Navier–Stokes equations, since Res = O(1) (cf. the estimate of § 5,
Res = 2.35). This, however, becomes too complicated given the sideways blowing into
the vortices involved in the present work (see figure 4).

9. Numerical implementation, experimental procedure and comparison
with experiments

9.1. The main formulae

From (6.31) and (6.33) we obtain the average Sherwood number in the form

〈Sh〉 = K
B√
ωD0

, (9.1)

where

K =
2√
π

[|〈ū1∞(x̄)〉|̄r(x̄)
]〈ū1∞(x̄)〉/〈¯̃u1∞(x̄)〉

ψ1/2(x̄)

[
ωa/c0

A0e/
(
ρ0c

2
0

)]1/2

, (9.2a)

ψ(x̄) =

∫ x̄

x̄2

[〈¯̃u1∞(ξ̄)〉]−1 [|〈ū1∞(ξ̄)〉|̄r(ξ̄)
]2〈ū1∞(ξ̄)〉/〈¯̃u1∞(ξ̄)〉

× exp

[
−2

∫ ξ̄

x̄

ln |〈ū1∞〉r̄| d

dη̄

(〈ū1∞〉
〈¯̃u1∞〉

)
dη̄

]
dξ̄. (9.2b)
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Here and hereinafter overbars mark dimensionless parameters: r, x, ξ and η are
rendered dimensionless by an initial volume-equivalent droplet radius a0, and 〈u1∞〉
by B; a is a current volume-equivalent dimensional radius of the droplet. The general
overbar in (9.2a) denotes averaging over the droplet surface as in (6.33); |〈u1∞〉|, etc.
denote the corresponding magnitudes.

If the simplified formula (6.36) is used, K in (9.1) is given by

K =
2√
π

|〈ū1∞〉|̄r[∫ x̄

x̄2

〈ū1∞〉r̄2dx̄

]1/2

[
ωa/c0

A0e/
(
ρ0c

2
0

)]1/2

. (9.3)

In the incompressible limit valid for small spherical droplets according to (7.4), the
Sherwood number is given by (9.1) with

K =

(
45

4π

)1/2

= 1.89. (9.4)

The mass balance for an evaporating droplet is similar to (7.7), but with Qm =
−4πa2〈h〉 (csb − cs∞), where 〈h〉 is calculated via the Sherwood number (9.1). Therefore
the mass balance (together with (8.15) and (8.16)) reduces to the system of differential
equations

dā2

d̄t
= −K

[
A0e/

(
ρ0c

2
0

)
ωa0/c0

]1/2
(csb − cs∞)

(csb − cs∞0)

(
B

B0

)1/2

, (9.5a)

dcs∞
d̄t

= −2π

(
a0

L∗

)3

ρl
(
ā2
)1/2 dā2

d̄t
−
(

1

τ
+

1

τD

)
(cs∞ − csh) , (9.5b)

t̄ = 0 : ā2 = 1, cs∞ = cs∞0, (9.5c)

τ−1 =
ρlV̇

a
3/2
0 (csb − cs∞0)

√
B0D0

(
a0

L∗

)3

, (9.5d)

τ−1
D =

ρlD0

a
1/2
0

(4π)2/331/3

(csb − cs∞0)
√
B0D0

(
a0

L∗

)2

. (9.5e)

Here the equivalent droplet radius a is rendered dimensionless by its initial value a0,
t is rendered dimensionless by ρla

3/2
0 /

[
(csb − cs∞0)

√
B0D0

]
, where B0 is the value of

B corresponding to the SPL at t = 0 (the general case of variable SPL during droplet
evaporation is discussed below).

In the case of sufficiently strong blowing when the dimensionless ‘ventilation time’
of the vortices τ tends to zero, the second term on the right in (9.5b) becomes
dominant, and thus, integrating (9.5b), we obtain cs∞ = csh + (cs∞0 − csh) exp(−t̄/τ).
Therefore, cs∞ → csh since τ → 0. This means that in the case of strong blowing
on an evaporating water droplet, the concentration cs∞ = csh, which is the water
vapour concentration in the gas jet due to humidity (cf. (8.8)). In the case of water
droplets it can be also assumed that cs∞0 = csh. For any other liquid in the case
of strong blowing cs∞ → csh = cs∞0 = 0. Therefore in the case of strong blowing
(csb − cs∞)/(csb − cs∞0) ≡ 1, equation (9.5b) always becomes irrelevant, decoupling
from (9.5a). Note also that the dimensionless ‘diffusion time’ τD is assumed to be
independent of the blowing rate.
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If we assume (say, for the case csh = cs∞0 = 0) that vapour concentration variation
is quasi-steady (dcs∞/d̄t = 0), then (9.5a, b) yield

cs∞ = csb
Yc

Yc +
(
csb/ρl

) (
τ−1 + τ−1D

) , (9.6a)

Yc = 2π

(
a0

L∗

)3 (
ā2
)1/2

K

[
A0e/

(
ρ0c

2
0

)
ωa0/c0

]1/2(
B

B0

)1/2

(9.6b)

which are used together with (9.5a) replacing equation (9.5b). It is seen that for
sufficiently strong blowing when τ−1 → ∞, cs∞ according to (9.6a) tends to zero,
which means that all the vapour is immediately blown off at the outer boundary of
the acoustic boundary layer.

In the general case K = K(ā2) via (9.2), or via (9.3) if a simplified form (6.36) is
used. In the incompressible limit K = 1.89, and (9.5a) can be integrated analytically
(in the case of strong external blowing) yielding (7.8) to (7.10). To calculate K in (9.2)
or (9.3) the boundary element method of YPT was used to compute the acoustic field
psr and psi, the droplet shape r(z) (squeezed by the acoustic field) and the position L.
This was done at every time step following the evolution of the droplet radius given
by (9.5). Given the acoustic field around a levitated droplet, the acoustic streaming
velocity 〈u1∞〉 was calculated from (4.20). Accounting for the expressions for A and
A1 in (4.9), one can deduce that the expression for 〈u1∞〉 in (4.20) involves the first
and second derivatives of the acoustic field over the droplet surface, as well as the
second derivatives of the functions determining the droplet shape. The derivatives
were found numerically, and the results (especially for the second derivatives) were
smoothed using the smoothing procedure from Hildebrand (1974, eq. (7.15.3) on
p. 357).

In the following subsections, the experimental apparatus and technique used for
the study of the evaporation behaviour of acoustically levitated pure liquid drops are
described and a comparison of the experimental and theoretical results is given.

9.2. Experimental procedure

The theoretical work of the present paper is accompanied by an experimental investi-
gation on the evaporation behaviour of acoustically levitated liquid droplets. For these
experiments, the ultrasonic levitator already used by YPT was employed together with
an image analysis system for determining the drop surface and volume as a function
of time. The whole experimental apparatus is sketched in figure 4. The ultrasonic
levitator supplied by Batelle Frankfurt (Germany) is characterized by the vibration
frequency of the ultrasound transducer of 56 kHz. This frequency corresponds to
the nominal sound wavelength λ0 = 0.61 cm at an unperturbed air temperature
T0 = 293 K, where the unperturbed sound velocity in air c0 = 343.8 m s−1. It was
shown in YPT that the harmonic content of the acoustic field in the levitator may be
approximated safely by a single standing harmonic wave. The ultrasound waves are
reflected from the concave surface of a round reflector plate positioned opposite the
transducer at a distance of 1.6 cm, which is appropriate to allow the formation of five
pressure nodes in this resonator. The distance between the transducer and the reflector
can be adjusted accurately by means of a micrometer screw. The uncertainty in the
reflector position is of the order of 20µm. The relative positions of the transducer
and reflector were kept constant throughout the measurements, and no active control
of the sound pressure level (SPL) was applied.
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Figure 4. Sketch of the experimental setup for measuring the evaporation rate of
acoustically levitated drops.
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Figure 5. Computed evolution of the SPL during the evaporation process of drops of water,
alcohols and alkanes in the acoustic field.

The droplets to be investigated are produced using a microlitre syringe. The drop
volume may be chosen with an uncertainty of ±0.05 µl. For producing the drop, the
liquid is sucked into the syringe, and the volume of liquid representing the initial drop
volume is pressed out of the syringe needle after it has been put close to the ultrasonic
resonator. The drop is then inserted into the ultrasonic field, where the SPL had to
be raised to the highest possible value for water drops to overcome the adhesion
forces which attach the drop to the needle. After the subsequent adjustment of the
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appropriate SPL at which the experiment is to be conducted, the drop is ready for the
measurements. The SPL is determined from the aspect ratio of the drop shape for a
given liquid and drop volume. The SPL changes with the aspect ratio and the volume
of the drop during evaporation, as shown in figure 5. This evolution of the SPL is
caused by the changing influence of the shrinking drop on the acoustic field. The
relative positioning of the transducer and reflector of the levitator was slightly off-
resonance in order to avoid disruption of the drops due to the high acoustic forces. The
tuning of the levitator, however, changes due to the change in drop volume and shape.

For determining the evaporation behaviour, the drop volume is measured as a
function of time using an imaging system. The particular parts of the system are a
CCD video camera with macrolens and a PC equipped with a frame-grabber card
and the software OPTIMAS. For imaging, the drop is illuminated from behind using
a source of white light. The drop is imaged using a large magnification factor, which
is calibrated before the measurement series by imaging a high-precision microscale
etched on a glass plate. Based on this high-quality image of the drop, the image
analysis software provides detailed information on the visible meridional cross-section
of the drop. The data consist of the shape of an ellipse fitted to the drop contour,
i.e. the lengths of the major and minor semiaxes sl and ss, the aspect ratio sl/ss
of the ellipse and the location of the centre of the ellipse relative to the origin
of a local coordinate system. Approximation of the cross-sectional shapes of the
droplets levitated in the same levitator by oblate spheroids was shown to be rather
accurate in YPT. In the present work the accuracy of such approximation has been
better than 2% in the representation of the surface contour and around 2.5% in the
representation of the drop volume. Based on these data, the volume of the spheroidal
drop is computed via the equation Vd = 4

3
πs2l ss, assuming axial symmetry around the

minor semiaxis. The surface Seo of the (oblate) drop is given by the equation

Seo = 2πs2l

1 +
ss/sl√(
sl/ss

)2 − 1

arsinh

√(
sl

ss

)2

− 1

 . (9.7)

The geometric data are acquired at a frequency which may be chosen adequately for
every evaporation behaviour. For doing this, a macro routine is used. All evaporation
measurements were repeated three times to evaluate the scatter of the measured data.
The data are further processed to compute the evaporation rate ṁ = ρl4πa

2da/dt on
the basis of the volume-equivalent drop radius a and its derivative with respect to time
as well as the surface of the drop as a function of time. This procedure is applicable
only for pure liquid drops, where the density ρl of the drop liquid is constant and the
drop mass can therefore be computed from its volume. For drops which consist of
liquid mixtures, the drop mass must be determined by a weighing procedure which
is much more time-consuming. A possible alternative for determining the drop mass
may, however, be the evaluation of the position of the centre of gravity of the drop
in the ultrasonic field, i.e. its displacement from a pressure node as a function of time
during the evaporation process. Since the drop rises in the acoustic field as it loses
mass, the displacement ∆z1 may be identified with the drop mass m via a calibration
relation which yields the function ∆z1 = f(m). This function is determined when using
pure liquid drops.

For the present study, the evaporation behaviour of drops of water and a number
of alcohols and alkanes was investigated for different initial drop volumes, sound
pressure levels and ambient air temperatures and humidities. The initial drop volume
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of 3 µl was chosen since it could be shown that the initial drop volume has no influence
on the drop evaporation behaviour under the present experimental conditions with
blowing.

In the experiment, blowing of dry air with relatively low and controllable humidity
was possible. The levitator was confined in a box, and air was blown horizontally onto
the levitated droplet from a small nozzle with the diameter d∗ = 0.39 cm positioned
at a distance l∗ = 7.0 cm from the droplet. The volumetric flow rate of air V̇ was
varied from 0 (no blowing) to about 2 ln min−1 (standard litres per minute). At higher
blowing rates stable levitation was impossible and the droplet was swept out from
the acoustic field in a horizontal direction by the air stream. The air velocity at the
nozzle exit U∗ = 4V̇ /(πd2∗) thus varied in the range 0 6 U∗ 6 279.1 cm s−1.

No direct measurement of the jet velocity field was made and thus some attempt
has been made to estimate the velocity of the gas stream experienced by the droplet.
The air flow produced by the nozzle can be characterized as a submerged gas jet
with the exit Reynolds number of the order of 102. In spite of the beginning of
transition to turbulence, such a jet can still be described rather accurately in terms
of the Schlichting solution for the self-similar axisymmetric submerged laminar jet
(Schlichting 1979). To find the velocity in the framework of the Schlichting self-similar
solution, one needs to introduce a polar distance of the jet dj . The maximal velocity
in the jet cross-section umax decreases along the jet axis as umax = const/x∗. At the
nozzle exit (which corresponds to the polar distance from the jet origin) we thus have
U∗ = const/dj . Therefore the drop experiences the velocity

umax, drop =
const

l∗ + dj
=

U∗
l∗/dj + 1

. (9.8)

The momentum flux in the jet is equal to ρ0U
2∗πd2∗/4 and thus according to Schlicht-

ing (1979) the self-similar coordinate ξ0.1 of the jet boundary y0.1 (where, say, the
longitudinal velocity is equal to 0.1umax) is given by

ξ0.1 =

(
3U2∗d2∗
64ν2

0

)1/2
y0.1

x∗
. (9.9)

Using the longitudinal velocity profile in the jet given by Schlichting (1979), we obtain
0.1 = (1 + ξ2

0.1/4)−2 and thus ξ0.1 = 2.94.
The nozzle circumference situated at x∗ = dj and y∗ = d∗/2 belongs to the boundary

of the jet issued from the virtual pole. Therefore we obtain the polar distance dj from
(9.9) as

dj =

(
3

64

)1/2
U∗d2∗
2ν0

1

2.94
, (9.10)

and hence

l∗
dj

=
2× 2.94(64/3)1/2(l∗/d∗)

U∗d∗/ν0

. (9.11)

Taking, for example, blowing with V̇ = 0.73 ln min−1, and thus U∗ = 101.85 cm s−1 we
find from (9.11) for l∗ = 7.0 cm, d∗ = 0.39 cm and ν0 = 0.15 cm2 s−1, that l∗/dj = 1.84
and thus from (9.8) umax, drop = 35.85 cm s−1. This is the velocity of the gas stream
impinging upon a levitated droplet.

However, a related velocity component uacoust,bound near the outer boundary of the

acoustic boundary layer y =
√

2ν0/ω is much lower, since the acoustic boundary
layer is situated near the bottom of that due to blowing. We find uacoust, bound assuming
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a Blasius velocity profile resulting from blowing in the vicinity of the droplet. The
self-similar coordinate of the Blasius profile given by Schlichting (1979) is η =
y(umax, drop/(ν0x))1/2. We should take x of the order of the droplet volume-equivalent
radius a ∼ 10−1 cm. Thus for umax, drop = 35.85 cm s−1 we obtain η ≈ 0.045. From the
Blasius velocity profile we thus find uacoust, bound/umax, drop ≈ 0.664η = 0.03. Therefore
uacoust, bound = 1.07 cm s−1 which is significantly less than the smallest estimate for the
acoustic streaming velocity Bs = 3.52 cm s−1 (cf. § 5). Therefore we can conclude that
at the blowing rate of V̇ = 0.73 ln min−1 the blowing effect on the vapour transport
near the outer boundary layer is still negligible. It is definitely much smaller inside
the acoustic boundary layer where the vapour transport is mainly due to the acoustic
streaming.

On the other hand, a similar calculation for V̇ = 2ln min−1 yields U∗ = 279.1 cm s−1,
umax, drop = 166.9 cm s−1, and uacoust, bound = 10.8 cm s−1, which is already larger than the
smallest streaming velocity Bs = 3.52 cm s−1. Therefore for such blowing velocity the
related convective effects begin to dominate the acoustic transport of vapour.

The boundaries between the regimes where blowing has no effect on the droplet
evaporation in the acoustic field, where it has an effect mainly on vapour concentration
outside the acoustic transport area, and where the blowing dominates the vapour
transport process were established in the experiments. The results are discussed in
§ 9.3 below.

As a practical aspect of the experiments it should be noted that it is virtually
impossible to begin with a droplet of a prescribed volume. Typically one begins
an experiment with a droplet volume 10% larger than the nominal, follows the
volume decrease, and starts recording the data from the desired volume. Since, during
the evaporation of the portion of the drop in excess of the desired initial volume,
continuous ventilation of the toroidal vortices is applied, a constant (low) humidity of
the gaseous environment of the drop is maintained all the time. Nevertheless, due to
the above procedure some uncontrollable vapour concentration in the vortices might
be present at the instant when the measurements begin.

9.3. Comparison of theoretical and experimental results

The sound pressure level SPL in the levitator was established using the procedure
developed in YPT. It allows one to find the effective pressure amplitude of the incident
acoustic field A0e from a measured aspect ratio sl/ss of a levitated droplet. The SPL
is found as in YPT using the definition

SPL = 20 log10 (A0e) + 74, (9.12)

where A0e is in dyne cm−2. The SPL found from (9.12) is denoted in the present
work by dBe as in YPT. If one wishes to define the SPL using the root-mean-square
pressure amplitude prms = A0e/

√
2 in (9.12) instead of A0e, the SPL will be lower than

the value in dBe by 3.01 decibels.
Note that the method of YPT for SPL calibration is subject to an error when air

blowing is involved, since the latter results in an additional droplet squeezing and
thus affects the axis ratio. The additional droplet squeezing due to blowing, however,
was not large, and thus the calibration of the acoustic field was still accurate, as the
comparison of the predictions with experimental data shows below.

The experiments showed that droplet evaporation is accompanied by a variation
of the aspect ratio. Therefore it turned out that the SPL increases during droplet
evaporation. This result is actually anticipated, since it is known that the presence of
a large squeezed droplet in a levitator results in a resonance shift caused by scattering
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Figure 6. The slopes of the D2 curves for water, alcohol and alkane drops with an initial volume
of 3 µl as functions of the blowing rate of air.

(Trinh & Hsu 1986). When a droplet becomes smaller in the course of evaporation,
the levitator tends back to the resonance conditions and thus the SPL increases.

The computation of the SPL for each aspect ratio during the lifetime of the drop
yielded the function SPL = f(V ), depending on the drop volume V . It is emphasized
that such a calibration has been done for all the liquids independently to account for
the effect of liquid physical parameters (e.g. of the surface tension). Figure 5 shows
the computed functions for water, alcohol and alkane drops, which could be verified
by measurements of the SPL with a piezoelectric pick-up. As a consequence of this
result, the SPL was treated as variable with time in the evaporation computations.

Before going into the details of the measurement series, the influence of the
ventilation of the toroidal vortices by blowing of dry air was investigated. The drop
evaporation, characterized by the time-average slope (d/dt)(D2/D2

0) of the curve
D2/D2

0 = f(t), which is the derivative of the normalized drop surface with respect to
time, was measured as a function of the volumetric flow rate of the blowing air for all
liquids under investigation. Figure 6 depicts the results for water, alcohol and alkane
drops with an initial volume of 3µl at the initial values of the SPL corresponding to
the extreme right-hand points in figure 5. It can be seen from the results in figure
6 that the drop evaporation behaviour is affected by the blowing in a range of air
volumetric flow rates V̇ between e.g. 0.5 and 1.6 ln min−1 for water and between 0.4
and 1.4 ln min−1 for ethanol. Actually two plateaux are clearly visible in figure 6.
For small V̇ (up to about 0.4 to 0.5 ln min−1) no influence of the sideways blowing
on the drop evaporation is seen. Also at V̇ from about 1.4 ln min−1 to about 1.8 ln
min−1 there is practically no effect of blowing for all the liquids except the case of
n-heptane (where the droplet position might be unstable due to interaction of blowing
and levitation since n-heptane is the least dense liquid used). At intermediate values
of V̇ (0.4 6 V̇ 6 1.4 ln min−1) evaporation is influenced by blowing. This presumably
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results in a permanent reduction of the vapour concentration at the outer boundary
of the acoustic boundary layer cs∞. At very large values of V̇ above 1.8 ln min−1 the
blowing-driven (convective) evaporation becomes evident, and the evaporation rate
begins to increase drastically.

One of the most important conclusions following from figure 6 is the fact that the
evaporation rate practically does not change at the second plateau 1.4 6 V̇ 6 1.6 ln
min−1 in spite of the variation of the blowing rate. This is explained by the ‘saturation’
of the vapour concentration cs∞ at zero level, as foreseen from (9.6b) for sufficiently
strong blowing. Therefore we expect that the experimental data obtained in this range
of V̇ might be described substituting in (9.5a) cs∞ = csh for water and cs∞ = 0 for
the other liquids. This has been done in the present work leading to the results
discussed below. Note also that the experiments described below were all carried out
at the conditions of ventilated vortices, corresponding to the second plateau, i.e. at a
constant liquid vapour concentration in the ambient air, which is approximately zero
for the alcohols and alkanes, and given by the controlled humidity of the blowing air
for water.

As mentioned above, at V̇ > 1.8 ln min−1 the air velocity experienced by the
droplet becomes so high that the evaporation approaches the convection-driven
regime. However, blowing in this range tends to blow out the droplets from the
levitator in a radial direction, so that a stable levitation is no longer possible. This
means that under the conditions of stable levitation we were able to investigate only
evaporation driven by the acoustic streaming, and we were unable to achieve the
convection-driven evaporation in the levitator due to the blow out of the droplet.

The image processing system used for the experiments allowed measurements of
the shape of the meridional section of the spheroidal drop to be performed. The
shapes at the instant when evaporation starts are depicted in figures 7(a) to 7(g) for
the liquids listed in table 3 and for water. The values of the sound pressure level at
this condition were mentioned above. The results show very good agreement between
the computed and the measured results.

The aspect ratios of the drop shapes as functions of time, measured and computed,
are depicted in figures 8(a) to 8(g) for the seven liquids investigated here; results of
a computation with constant SPL are also shown. Since the variation of the SPL
with time was determined computationally according to the measured evolution of
the aspect ratio of the drop using the procedure of YPT discussed above, it is not
surprising that the aspect ratio computed with variable SPL and the measured data
are in very good agreement, while the data computed with constant SPL (the initial
value) predict far smaller deformations of the drop than measured in the experiments.

Figures 9(a) to 9(g) show the measured evaporation behaviour of droplets of the
seven liquids investigated with an initial volume of 3µl, represented by the decrease
of the normalized drop surface with time. The measured data are represented by the
filled symbols. For comparison, two curves computed using the present theory are
also given in the figure. The curves marked by the open circles show the results of
computations with the SPL kept constant at its initial value. The curves marked by
the open squares show the data computed with variable SPL. The good agreement
between these latter curves and the measured data is clearly visible, indicating the
correct representation of the evaporation process by the present theory.

Figure 10 shows the measured displacement of the drop centres from the nearest
pressure node as a function of time for drops of the liquids considered here with an
initial volume of 3 µl. Again the measured data agree better with the results of the
computation with variable SPL. The results show the rise of the drops in the acoustic
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field during the evaporation process. Since the experimental data exhibit only very
small scatter, they are suitable for determining the drop mass from the displacement.
This is of great interest for determining the evaporation rate of drops in the second
drying stage of suspensions, dispersions and liquid mixtures. Note also that the
displacement value is the most sensitive parameter in the acoustic levitation as was
shown in YPT. It may be affected by small droplet displacements from the levitator
axis in the horizontal direction due to the blowing. These horizontal displacements
may initiate three-dimensional effects in the acoustic field, which immediately affect
such sensitive characteristics as the vertical displacement from the pressure node.

The relevant characteristic number for quantifying the mass transfer is the Sherwood
number 〈Sh〉. This number is determined by the coefficient K in equation (9.1),
together with the velocity B determined by the SPL via (2.2) and (9.12). It has been
shown in § 7 that the value of K converges to 1.89 as the drop size decreases and the
drop becomes more and more spherical. In figure 11(a, b) the temporal evolution of
the computed value of K is shown together with the asymptote 1.89. The values of K
decrease with time, i.e. with decreasing drop surface. The results show that the values
of K are significantly larger than 1.89 at the beginning when the droplet is still large
and squeezed. Only near the point of extinction, when the droplet becomes small due
to evaporation, do the values of K approach 1.89.

It is emphasized that, for calculating 〈Sh〉 from equation (9.1), we find A0e and B
from a given SPL via (9.12) and (2.2). If one uses the same value of the SPL, but
defined via the root-mean-square of the pressure amplitude (prms = A0e/

√
2 instead of

A0e in (9.12)), then

Brms = B
√

2, Krms =
K√

2
(9.13)

appear in all the formulae. Therefore, for small spherical droplets (9.1) and (9.4) may
be rearranged into

〈Sh〉 = 1.336
Brms√
ωD0

(9.14)

(since
√

45/(4π)/
√

2 = 1.336). Expression (9.14) may also be rearranged to the form

〈Sh〉 = 1.336

(
ν0

D0

)1/2
Brms√
ων0

(9.15)

which should be compared with the approximation proposed in Gopinath & Mills
(1993) for the results of their numerical calculations of heat transfer from a sphere
due to the acoustic streaming

〈Sh〉 = 1.314

(
ν0

D0

)0.665
Brms√
ων0

for 0.1 6
ν0

D0

6 10.0. (9.16)

(Following Tian & Apfel (1996) we put the results of Gopinath & Mills (1993) for
〈Nu〉 into the expression (9.16) for 〈Sh〉). Expression (9.16) is valid for Brms/

√
ων0 � 1,

which is identical to (Brms/ωa)
√
Re� 1 according to (2.1). In our case, as was shown

in § 2, Re ∼ 2.3 × 104, whereas (Brms/ωa) ∼ 10−2. Therefore in our case Brms/
√
ων0

Figure 7. The shapes of (a) methanol, (b) ethanol, (c) propanol-2, (d) n-heptane, (e) n-octane, (f)
n-decane and (g) water droplets with an initial volume of 3 µl computed and measured by means of
the image processing system. The SPL is 162.591, 162.531, 161.747, 161.872, 161.872, 162.184 and
165.875 dBe for the seven liquids, respectively. Blowing rate V̇ = 1.4 ln min−1.
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is of the order of several units and the condition of applicability of approximation
(9.16) is approximately satisfied. Comparison of (9.15) with (9.16) shows that they
predict similar values of the Sherwood number.

Expression (9.14) is compared in figure 12 with the experimental data of Burdukov
& Nakoryakov (1965b) and Gopinath & Mills (1993). The former positioned metal
spheres covered by a solid camphor layer in acoustic fields of various intensities
(SPL = 150 to 163 dB) and frequencies (11.5× 2π to 18× 2π kHz) and measured the
mass transfer rate due to camphor sublimation. The latter put a thermistor bead in
an acoustic field of SPL = 155 dB and frequency of 1018 Hz and measured the heat
transfer rate. Actually they measured 〈Nu〉. In the present paper we refer to their

result as 〈Sh〉.
In figure 12 the dotted straight line corresponding to (9.14) is valid for small

spherical bodies (Ω � 1). It is seen, however, that it fits pretty well the data of
Burdukov & Nakoryakov (1965b) obtained for spheres with Ω 6 1. The dashed curve
shows the numerical results for big 5 µl n-hexadecane droplets (ρl = 0.7734 g cm−3,
α = 27.64 g s−2) corresponding to the beginning of their evaporation (t = 0). These
droplets are squeezed significantly by the acoustic field. As a result, the corresponding
values of the Sherwood number are higher than those predicted by (9.14) (cf. figure 11).

As follows from figure 12, (9.14) represents a good approximation for spherical
bodies positioned at the pressure node, even if they are not small enough to make
the incompressible approximation formally valid. To check this, we computed the
evaporation process of a levitated 5 µl droplet of an artificially low density (ρl =
0.01 g cm−3), and high surface tension (α = 200 g s−2). The value of K changed with
time in the range from about 2.1 to 1.89, which is close to the predictions of the
incompressible approximation (9.4) and (9.14), in spite of the fact that the droplet size
is comparable with the sound wavelength (Ω = 1.0978). However, this artificial droplet
was practically spherical and positioned close to the pressure node, which seems to
be enough to apply (9.4) and (9.14). Therefore the deviation of the dashed curve in
figure 12 may be attributed to significant droplet squeezing by the acoustic field.

For mass transfer from a sphere subject to a relatively strong forced convection,
the Sherwood number is given by

〈Sh〉 ∼ Re1/2
c Sc1/3, (9.17)

where Rec = Vca/ν0 is the convective Reynolds number based on a velocity Vc, and
Sc = ν0/D0 is the Schmidt number (Bird et al. 1960, p. 647). In the present case the
flow at the outer boundary of the acoustic boundary layer is mainly associated with
the acoustic streaming. Thus taking Vc ∼ Bs ∼ B2

rms/(ωa) (cf. (5.19)), we obtain from
(9.17)

〈Sh〉 ∼
(
ν0

D0

)1/3
Brms√
ων0

(9.18)

which is rather close to (9.15) and (9.16), especially given ν0/D0 = O(1). (A similar
approximation was used in Lee & Wang (1988) to estimate the Nusselt number in
the acoustic field).

Figure 8. Temporal evolution of the aspect ratio sl/ss of drops of (a) methanol, (b) ethanol, (c)
propanol-2, (d) n-heptane, (e) n-octane, (f) n-decane and (g) water with an initial volume of 3µl.
The data computed with variable SPL agree well with the measurements. The results marked as
‘computed with constant SPL’ were computed at the values of SPL corresponding to t = 0, when
the droplet volumes were 3 µl. Blowing rate 1.4 ln min−1.
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The Sherwood numbers computed on the basis of the present theory for drops
with initial volumes of 3µl are shown as functions of time in figure 13 for the liquids
discussed here. It is seen from these results that the Sherwood number is far from the
value of 2 for purely diffusive mass transfer (without the acoustic field and blowing).
We may conclude from this fact that an acoustic levitator with a strong acoustic field
is not suitable for investigating diffusive heat and mass transfer from the levitated
drops. In contrast to this, Seaver et al. (1989) and Tian & Apfel (1996) claimed that
the effect of the acoustic field on droplet evaporation is negligible and that mass
transfer is driven purely by molecular diffusion of the vapour. In that case, Sh = 2,
and a single equation describing the evolution of the droplet radius is readily available

d

dt

(
4πa2

)
= −8πD0M

ρlRg

(
psat

Ts
− pv∞
T∞

)
, (9.19)

where pv∞ is the vapour pressure far from the droplet. The above authors claimed that
equation (9.19) described their data for drop evaporation in the acoustic field. Note,
however, that Tian & Apfel (1996) worked with a field with SPL from 140 to 150 dB.
Also, Seaver et al. (1989) worked with a field with SPL≈ 150 dB. So their fields were
weak and their droplets were small compared to those of the present work where the
effect of the acoustic field is found to be significant. The fact that 〈Sh〉 is a growing
function of SPL according to the experimental data of Burdukov & Nakoryakov
(1965b) shown in figure 12 also supports the conclusion that the effect of the acoustic
field on droplet evaporation may be strong. Also it should be added that Seaver &
Peele (1990) reported that equation (9.19) does not describe their experimental data
as perfectly as reported by Seaver et al. (1989).

Equation (9.19) may be rewritten using (8.4) as

da2

dt
= −2D0

ρl
(csb − csh) (9.20)

which in the integrated form yields the lifetime of a droplet

tl =
ρla

2
0

2D0 (csb − csh) . (9.21)

For the data corresponding to the present experiments (even without blowing when the
lifetime is maximal), equation (9.21) may underestimate or overestimate the measured
lifetime by about 100%. For example, for methanol, equation (9.21) yields tl ≈ 100 s
instead of the measured (without blowing) tl = 265 s, whereas for propanol-2 it
predicts tl = 600 s instead of the measured value (without blowing) of tl = 330 s.
These estimates show additionally that the description based on the model assuming
purely diffusional transport fails.

Analytical results for the distributions of the acoustic streaming velocity 〈ū1∞〉 and
the Sherwood number 〈Sh〉, valid only for very small droplets, are obtained from
(5.18) and (7.3). These results are compared with the numerical ones based on (4.20)
and (6.31) in figures 14(a) to 14(e). It is seen that the asymptotical analytical results
approach the numerical ones only for droplets with volumes less than about 0.01µl

Figure 9. Temporal evolution of the normalized drop surface for (a) methanol, (b) ethanol, (c)
propanol-2, (d) n-heptane, (e) n-octane, (f) n-decane and (g) water droplets with an initial volume
of 3 µl and initial SPL of 162.591, 162.531, 161.747, 161.872, 161.872, 162.184 and 165.875dBe,
respectively. The vapour concentration in the toroidal vortices is kept constant (close to zero for
water, and zero for the other liquids) by ventilation. Blowing rate 1.4 ln min−1.
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Figure 11. Temporal evolution of computed values of the coefficient K in equation (9.1)
(a) methanol, ethanol and propanol-2 droplets and (b) n-heptane, n-octane, n-decane and water
droplets with the initial volume of 3 µl. The SPL increases with time and leads to larger values of
K than those at a constant SPL.

(a0 6 0.0134 cm). For droplets with a0 > 0.0134 cm the incompressible approximation
fails (also their squeezing may become important) and the Sherwood number may be
described accurately only using (9.1) with (9.2) or (9.3).

Figure 10. Displacement of the centres of evaporating (a) methanol, (b) ethanol, (c) propanol-2,
(d) n-heptane, (e) n-octane, (f) n-decane and (g) water drops from the nearest pressure node as
functions of time for the initial drop volume of 3 µl. Experiments with ventilation of the vortices.
Blowing rate 1.4 ln min−1.
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Figure 12. Comparison of the results from various experiments with the present calculations. The
experimental data of Burdukov & Nakoryakov (1965b) are represented by symbols corresponding
to the following frequencies in kHz and sphere diameters in mm: �, (18× 2π, 6); +, (18× 2π, 3.5);
�, (11.5 × 2π, 10); ×, (11.5 × 2π, 6); 4, (11.5 × 2π, 3.5). ∗ Corresponds to the experimental result
of Gopinath & Mills (1993). The dotted straight line corresponds to (9.14), formally valid for small
spherical bodies. The dashed curve shows the numerical results for big 5µl n-hexadecane droplets
squeezed by the acoustic field.

10. Conclusion
A theoretical description of the ultrasonic field around an acoustically levitated

liquid drop and its influence on heat and mass transfer between the drop and the
ambient air is given. The theory is applicable to drops of arbitrary size relative to
the sound wavelength, including those of the order of the wavelength, where the
compressibility of the gas flow cannot be ignored. It is emphasized that, to our
knowledge, the theory represents a first description of the compressible acoustic
streaming and its effect on heat and mass transfer. The theory also accounts for
droplet squeezing by the acoustic field.

The essential results of the theory are the drop shape, as well as the evaporation
rate of the drop as functions of time. Furthermore, the location of the drop in the
acoustic field, i.e. its displacement from a pressure node, and the temporal evolution
of the Sherwood or Nusselt numbers are computed.

A qualitatively new effect revealed in the present work is the existence of the first
and second plateaux in the droplet evaporation rate, where radial blowing of air
towards the drop does not affect evaporation at all. Also the role of ventilation of the
toroidal vortices about the levitated droplet and its effect on vapour concentration
and evaporation rate have been elucidated. The existence of the acoustically driven
evaporation processes has been unambiguously shown. The effect of the acoustic field
on droplet evaporation appears to be related to the acoustic streaming and squeezing
of the drops by the acoustic radiation pressure. In strong fields this effect becomes
dominant, which makes it impossible to study convective heat and mass transfer using
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Figure 13. The Sherwood numbers for (a) methanol, ethanol and propanol-2 droplets and
(b) n-heptane, n-octane, n-decane and water droplets with the initial volume of 3 µl as func-
tions of time. Computations with constant and variable SPL. All values are larger than 2. Data

obtained with variable SPL for water show an increase of 〈Sh〉 with time.

droplets levitated in strong acoustic fields since this ‘non-intrusive’ technique actually
becomes very intrusive.

Acoustically driven evaporation rates of seven liquids including water, alcohols
and alkanes were measured. Comparison of the theoretical predictions with the
experimental data for evaporating drops in the ultrasonic levitator shows good
agreement, provided that the external toroidal vortices formed in the vicinity of the
drops are ventilated by air blowing to avoid enrichment of the vortices with the liquid
vapour.
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Figure 14. Distributions of the dimensionless acoustic streaming velocity 〈ū1∞〉 and the Sherwood
number 〈Sh〉 over the droplet surface at t = 0. x is the dimensionless arclength of the droplet
generatrix from the bottom O1 (cf. figure 2a). SPL = 160.247 dBe, n-hexadecane droplets. The
analytical asymptotic results: curve 1, 〈ū1∞〉 given by (5.18); 2, 〈Sh〉 given by (7.3). The numerical
results: 3, 〈ū1∞〉 given by (4.20); 4, 〈Sh〉 given by (6.34). The initial drop volumes are (a) 5µl,
(b) 1 µl, (c) 0.1 µl, (d) 0.01 µl, (e) 0.001 µl.
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Appendix A
According to (4.10a) and (4.12) with η →∞

u0∞ = A cosωt+ A1 sinωt, (A 1a)

v0∞ = −
{(

dA

dx
+

dr/dx

r
A

)(
y cosωt− δ

2
cosωt− δ

2
sinωt

)
+

(
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)(
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B

[
−
(

cos
ωz1
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sinωt+ psi cosωt

]}
. (A 1b)

Accounting for (4.15) and (A 1) we obtain〈
u0∞

∫
u0∞ dt

〉
= 0, (A 2a)
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Figure 15. Visualized meridional section of the flow field inside a 2µl methanol droplet with an
aspect ratio sl/ss = 1.5. The streaks show two toroidal vortices which differ in size due to the
levitation of the droplet below a pressure node. Flow velocities were measured using multi-exposure
images with shorter exposure time.
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Note also that from (A 2c) and (A 2g) it is seen that〈
u0∞

∫
∂v0∞
∂x

dt

〉
∼ B B

ωa

δ

a
,

〈
v0∞
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dt

〉
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δ

a
. (A 3a, b)

Appendix B
In this Appendix we consider an internal circulation in an acoustically levitated

droplet and its possible effect on the acoustic streaming in gas. The liquid in the droplet
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may be driven by the gas flow near its surface. In order to find a representative flow
velocity inside the drop we carried out a simple experiment and thorough calculations.
The calculations also reveal the influence of the liquid motion on the mass transfer
in the gas.

Before starting the calculations we describe an experiment carried out to visualize
the liquid motion in the droplet and to measure a typical circulation velocity in
the liquid. Particle image velocimetry (PIV) was used as a measuring technique. A
laser light sheet illuminating a meridional section of the droplet in the levitator
was produced by a 100 mW Nd : YAG laser, using an arrangement of spherical and
cylindrical lenses which provided a sheet thickness of about 100 µm. For visualizing the
flow inside the droplet, small hollow glass spheres with a mean diameter of 2µm were
added to the droplet liquid as tracer particles. The laser light scattered by the particles
was detected by a high-resolution high-speed CCD camera SENSICAM purchased
from PCO Computer Optics Ltd. Figure 15 shows a result of this visualization
experiment for a 2 µl methanol droplet with an aspect ratio sl/ss = 1.5. The streaks in
the drop meridional section show clearly the structure of the flow inside the drop. It is
seen that two toroidal vortices inside the droplet set in. The vortices differ from each
other in size, since the droplet is levitated below a pressure node. The measurement
of a typical flow velocity inside the droplet was carried out using four exposures on
one image frame, each with an exposure time of 100µs, and a time delay of 1000 µs
between the exposures. The flow velocity was calculated from these images using the
auto-correlation technique. A PIV experiment was carried out using a 2 µl methanol
droplet at an aspect ratio sl/ss = 1.14 (i.e. different from the droplet visualized in
figure 15), corresponding to an SPL of 159.997 dBe. The velocity measured at a
position close to the drop surface in the equator plane of this drop was 2.4 cm s−1.

In order to find the liquid motion theoretically, use should be made of the conditions
that at the gas/liquid interface the velocity and shear stresses are continuous. In the
leading order O(B) these conditions replace the boundary condition (4.8b) and allow
one to calculate both the gas and liquid motions solving the conjugate problem. In
the leading order the Stokes layer should also appear in the liquid near the droplet
surface. Thus, the condition of continuity of the shear stresses yields the estimate

µl
ul0(

νl/ω
)1/2
∼ µ0

B(
ν0/ω

)1/2
, (B 1)

where µl and νl are the dynamic and kinematic viscosities of the liquid, and ul0 is the
magnitude of the liquid velocity at the interface in the leading order.

According to (B 1), ul0 = χB, where χ = (µ0ρ0/µlρl)
1/2. Virtually for all liquids

χ 6 10−5/2 � 1. Since ul0 � B, application of the no-slip condition in the form of
(4.8b) in the leading order is justified. The corresponding Reynolds stresses in the
droplet are O(χ2) and may be neglected, which means that the liquid’s own ‘drive’ for
the steady liquid streaming is weak and negligible.

However, a steady circulation within the droplet may also result from liquid en-
trainment at the interface by the steady acoustic streaming in the gas. This circulation
will envelope the whole body of the droplet (not only a thin Stokes layer near its
surface). An estimate of the velocity magnitude ul1 in such a circulation can be readily
obtained from the continuity of the shear stresses at the droplet surface as

µl
ul1

a
∼ µ0

Bs(
ν0/ω

)1/2
, (B 2)
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where Bs = B2/ωa is the magnitude of the acoustic streaming velocity in gas (given
e.g. by (5.19)).

The estimate yields

ul1 ∼
[
a

µl

√
µ0ρ0ω

]
Bs. (B 3)

For a ∼ 10−1 cm, µ0 ∼ 10−4 g cm−1 s−1, ρ0 ∼ 10−3g cm−3, ω = 56 × 2π × 103 s−1, and
µl ∼ 10−2g cm−1 s−1 one obtains ul1 ∼ 1.88Bs, which shows that the estimate (definitely
yielding the correct scaling) is, nevertheless, quite inaccurate, since a dimensionless
factor missing in it may be significantly smaller than 1. We shall, indeed, find that
this is the case in the detailed calculation below.

First of all, let us find the shear stress acting at the droplet surface from the acoustic
streaming flow. It is emphasized that we now disregard the boundary condition (4.14)
at y = 0, which is replaced by the conditions of continuity of the velocity and shear
stresses at the droplet surface. Integrating equation (4.16) using (3.5), (4.10a), and
(4.12) as well as the boundary condition (4.14) for y = ∞, we find the derivative
∂〈u1〉/∂η. At η = 0 we obtain
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(B 4)

From now on we consider an incompressible limit corresponding to the case of a small
spherical droplet (cf. § 5). We assume that it sustains its spherical shape due to the
surface tension in spite of the forces from the gas side, which is actually similar to the
assumption used in Taylor (1932) to calculate the viscosity of emulsions. Accounting
for (5.2), (5.3), (5.8), (5.14), (5.17), and the fact that Ω2 � 1, we reduce (B 4) to

∂〈u1〉
∂η

∣∣∣∣
η= 0

=
9

8

B2

ωa
sin θ cos θ, (B 5)

where θ, as in § 5, is the angle reckoned from the droplet bottom (cf. figure 1).
Therefore the shear stress imposed by the acoustic streaming flow on the droplet

surface is given by

σRθ|R= a = µ0

∂〈u1〉
∂y
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y= 0

=
√
ρ0µ0ω

9

16
√

2

B2

ωa
sin 2θ, (B 6)

where σRθ|R=a is the shear stress in the liquid.
Expression (4.17) for the acoustic streaming in gas holds. However, the constant of

integration C in it is now found using the velocity continuity at the droplet surface

〈u1〉|η= 0 = vθ|R= a, (B 7)

where vθ|R= a is the liquid velocity at the surface which is found below.
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Using (B 7), we arrive at (4.18) and (4.20) with an additional term vθ|R=a on the
right. As a result, for the small spherical droplet we are dealing with here, we obtain

〈u1∞〉 = vθ|R=a − 45

32

B2

ωa
sin 2θ (B 8)

which replaces (5.18).
We now proceed towards calculation of the internal circulation in the droplet subject

to the boundary condition (B 6). For a droplet of radius a = 10−2 cm, given the velocity
magnitude of the internal circulation of the order of Bs ∼ 1 cm s−1 and the kinematic
viscosity νl ∼ 10−2 cm2 s−1, we estimate the Reynolds number Rel = Bsa/νl ∼ 1,
which permits use of the Stokes equations for the internal flow. This approximation
certainly will be less accurate for a ∼ 10−1 cm (Rel ∼ 10). However, even in this case
the inertial effects will still be not too large, and the extrapolation of the result may
lead to a plausible estimate. We use the general solution of the Stokes equations in
spherical harmonics given in Lamb (1959, §§ 335 and 336). We adopt in the rest of this
Appendix the notation of Lamb (1959) which is different from (and should not be
mixed with) the other parts of the present paper. We denote the Cartesian coordinate
system x, y and z with the origin at the droplet centre, and x being reckoned from
the centre towards the droplet bottom (parallel and opposite to z of figure 1). The
corresponding Cartesian components of the liquid velocity v are denoted u, v and w.
We also introduce the spherical coordinate system R, θ (the same R and θ as in § 5;
also cf. figure 1), and ϕ with the origin at the droplet centre, which yields

x = R cos θ, y = R sin θ cosϕ, z = R sin θ sinϕ. (B 9)

Since the unity vector of the angular direction θ, eθ is given by

eθ = −i sin θ + j cos θ cosϕ+ k cos θ sinϕ, (B 10)

we obtain

σRθ = σR · eθ = − sin θ σRx + cos θ cosϕ σRy + cos θ sinϕ σRz, (B 11a)

vθ = v · eθ = − sin θ u+ cos θ cosϕ v + cos θ sinϕ w. (B 11b)

The liquid velocity at the droplet surface is that of the acoustic streaming on the gas
side, and thus the only non-zero component of v|R= a on the liquid side is vθ , and the
only non-zero component of (curl v)|R= a is (curl v)θ . The expressions for R · curl v
and R · v following from Lamb’s solution are

R · curl v =

∞∑
n=−∞

n (n+ 1) χn, (B 12a)

R · v =
1

µl

∞∑
n=−∞

nR2

2 (2n+ 3)
pn +

∞∑
n=−∞

nϕn (B 12b)

with R being the radius vector from the droplet centre, pn a solid harmonic of degree
n, and ϕn and χn arbitrary harmonics of degree n.

Taking (B 12) at the droplet surface R = a and accounting for the fact that R
is aligned in the radial direction, whereas both curl v and v point in the angular
direction (θ), we find that R · curl v = 0 and R · v = 0 at the droplet surface, and thus
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from (B 12) we obtain

χn ≡ 0,
1

µl

∞∑
n=−∞

na2

2 (2n+ 3)
pn +

∞∑
n=−∞

nϕn = 0. (B 13a, b)

Using the general solution of the Stokes equations in spherical harmonics from Lamb
(1959) and accounting for (B 11) and (B 13a), we obtain the expressions for the shear
stress and the angular velocity at the droplet surface in the form

σRθ|R= a =

∞∑
n=−∞

{
n− 1

2n+ 1
a

(
− sin θ

∂pn

∂x
+ cos θ cosϕ

∂pn

∂y
+ cos θ sinϕ

∂pn

∂z

)

+

(
2n2 + 4n+ 3

)
(n+ 1) (2n+ 1) (2n+ 3)

a2n+2

[
− sin θ

∂

∂x

(
pn

R2n+1

)

+ cos θ cosϕ
∂

∂y

( pn

R2n+1

)
+ cos θ sinϕ

∂

∂z

(
pn

R2n+1

)]}

+
2µl
a

∞∑
n=−∞

(n− 1)

(
− sin θ

∂ϕn

∂x
+ cos θ cosϕ

∂ϕn

∂y
+ cos θ sinϕ

∂ϕn

∂z

)
,

(B 14a)

vθ|r= a =
1

µl

∞∑
n=−∞

{
a2

2 (2n+ 1)

(
− sin θ

∂pn

∂x
+ cos θ cosϕ

∂pn

∂y

+ cos θ sinϕ
∂pn

∂z

)
+

na2n+3

(n+ 1) (2n+ 1) (2n+ 3)

[
− sin θ

∂

∂x

(
pn

R2n+1

)

+ cos θ cosϕ
∂

∂y

(
pn

R2n+1

)
+ cos θ sinϕ

∂

∂z

(
pn

R2n+1

)]}

+

∞∑
n=−∞

(
− sin θ

∂ϕn

∂x
+ cos θ cosϕ

∂ϕn

∂y
+ cos θ sinϕ

∂ϕn

∂z

)
. (B 14b)

Note that on the right-hand sides of (B 14) R = a should be substituted after the
differentiation.

Given the boundary condition imposed on σRθ|R= a (cf. (B 6)) and (B 9), it is easy
to see that the only two spherical harmonics needed in the present case are

p2 = E ′R2 1
2

(
3 cos2 θ − 1

)
= E ′ 1

2

(
3x2 − R2

)
, (B 15a)

ϕ2 = E ′′R2 1
2

(
3 cos2 θ − 1

)
= E ′′ 1

2

(
3x2 − R2

)
, (B 15b)

with all the other harmonics being zero.
Substituting (B 15) in (B 14a), we find

σRθ|R= a =
(− 4

7
a2E ′ − 3µlE

′′) sin 2θ. (B 16)

Therefore the boundary condition (B 6) together with (B 16) yields

√
ρ0µ0ω

9

16
√

2

B2

ωa
= − 4

7
a2E ′ − 3µlE

′′. (B 17)
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Substituting (B 15) in (B 13b), we find additionally

E ′′ = −E
′a2

14µl
. (B 18)

Solving the system (B 17) and (B 18), we find E ′ and E ′′ as

E ′ = −14

5

1

a2

√
ρ0µ0ω

9

16
√

2

B2

ωa
, E ′′ =

1

5µl

√
ρ0µ0ω

9

16
√

2

B2

ωa
. (B 19a, b)

Substituting (B 15) and (B 19) into (B 14b), we find

vθ|R=a =
9

80
√

2

(
a

µl

√
ρ0µ0ω

)
B2

ωa
sin 2θ (B 20)

which improves the rough estimate of (B 3).
The general solution of the Stokes equations given in Lamb (1959) with the

harmonics of (B 15) yields after a simple rearrangement and the use of (B 18) the
whole flow field inside the acoustically levitated droplet

vR =
E ′

14µl

(
2 cos2 θ − sin2 θ

) (
R3 − a2R

)
, vθ =

E ′

28µl
sin 2θ

(
3a2R − 5R3

)
. (B 21a, b)

Introducing the stream function Ψ by the relations

∂Ψ

∂R
= −vθR sin θ,

∂Ψ

∂θ
= vRR

2 sin θ, (B 22)

and using (B 21), we find

Ψ =
E ′a5

28µl
sin θ sin 2θ

[(
R

a

)5

−
(
R

a

)3
]
, (B 23)

where E ′ is given by (B 19a).
It is emphasized that a similar flow inside a droplet was predicted by Taylor (1966)

in his work on the circulation produced in a drop by an electric field. There the
tangential stress imposed by the electric field on the droplet surface has the same
angular dependence as that of (B 6) resulting from the acoustic streaming. Therefore
the stream function given by (16) and (18) in Taylor (1966) is essentially the same
as that of (B 23) (except the constant factor E ′a5/28µl). Consequently the streamlines
depicted in figure 1 of Taylor (1966), as well as the circulation seen in the photograph
of his figure 2 represent (up to a constant factor) the structure of the flow inside an
acoustically levitated droplet. Also the photograph shown in figure 15 of the present
work is reminiscent of figure 2 of Taylor (1966), and also the flow field (B 23) closely
corresponds to the flow field recorded in the present work in figure 15. There is
an important difference, however, in the steady motion of the medium outside the
droplet. In the situation studied by Taylor (1966) the flow outside the droplet does
not form a boundary layer similar to the acoustic one, and is always in the same
direction as the droplet liquid flow at the interface (e.g. see his figure 1). In our case,
however, the situation is more complicated. Indeed, according to (B 8) and (B 20), the
acoustic streaming velocity in the gas at the outer boundary of the acoustic boundary
layer becomes

〈u1∞〉 =
9

80
√

2

(
a

µl

√
ρ0µ0ω

)
B2

ωa
sin 2θ − 45

32

B2

ωa
sin 2θ. (B 24)
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It is seen that according to (B 24) the liquid flow reduces the acoustic streaming
velocity 〈u1∞〉. This results from the fact that the gas flow at the liquid interface is
opposite to that at the outer boundary of the acoustic boundary layer (cf. figure 3).
This situation is completely different from that considered in Taylor (1966).

It is instructive to compare the magnitude of the first term on the right in (B 24),
vθ|R= a, to the second one, 〈u1∞〉0, to estimate the effect of the circulation in the liquid
on the acoustic streaming flow in gas. Their ratio is

|vθ|R= a|
|〈u1∞〉0| =

√
2

25

(
a

µl

√
ρ0µ0ω

)
. (B 25)

Taking ρ0 ∼ 10−3g cm−3, µ0 ∼ 10−4g cm −1 s−1, µl ∼ 10−2g cm−1 s−1, ω = 56 × 2π ×
103 s−1, and a ∼ 10−2 cm, we find from (B 25) the ratio of 0.0106. Extrapolating to
much larger droplets with a ∼ 10−1 cm, we obtain the ratio of 0.106. Therefore in
the worst case the effect of the circulation in the liquid on the acoustic streaming
velocity at the outer boundary of the acoustic boundary layer is about 10%. If this
effect were incorporated in the calculation of the mass flux from the droplet surface
during its evaporation in a strong acoustic field, it would actually modify only the
expression for 〈ũ1∞〉 in (6.24b) with all the other formulae being the same. Thus,
according to (9.17) with Vc of the order of the acoustic streaming velocity at the outer
boundary of the acoustic boundary layer, one expects the Sherwood number value to
increase by a factor of about (1.1)1/2 = 1.049. This factor is close to 1, which allows
us to neglect the effect of the internal circulation of liquid within the droplet on the
acoustic streaming velocity and the mass transfer rate, as has been done throughout
the main body of the paper.

In the case of heat removal from a warm droplet a possible slightly non-uniform
temperature distribution in the liquid may also result in a surface-tension-driven
circulation. For a temperature difference of the order of 10−1 ◦C we find from (8.5)
and table 1 a surface tension variation of the order of ∆α = 10−2g s−2. This results
in the shear stress of the order of µlul/a ∼ ∆α/(2πa). Given µl ∼ 10−2g cm−1 s−1,
we estimate ul ∼ 10−1 cm s−1 due to the Marangoni convection, which certainly
could be neglected. For a temperature difference of the order of 1 ◦C, we obtain an
estimate ul ∼ 1 cm s−1. The mixing time, however, becomes very short, of the order
of 2πa/ul 6 0.6 s for a 6 10−1 cm. Therefore in the process with the duration of the
order of 102 to 103 s we are dealing with, the Marangoni mixing will tend to reduce
the temperature difference, and thus ul , to a level, where the latter can be safely
neglected.
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